slideshow 16 slideshow 1 slideshow 2 slideshow 3 slideshow 4 slideshow 5 slideshow 6 slideshow 7 slideshow 8 slideshow 0 slideshow 9 slideshow 10 slideshow 11 slideshow 12 slideshow 13 slideshow 14 slideshow 15

BLOG: LA CHIMICA E LA SOCIETA'

Condividi contenuti La Chimica e la Società
Nell’Antropocene, l’epoca geologica attuale fortemente caratterizzata dalle attività dell’uomo, la Chimica ha il compito di custodire il pianeta e aiutare a ridurre le diseguaglianze mediante l’uso delle energie rinnovabili e dell’economia circolare.
Aggiornato: 3 settimane 3 giorni fa

Il cubo di Rubik chimico

21 agosto, 2019 - 10:43

Rinaldo Cervellati 

Come noto al grande pubblico, il cubo di Rubik è un famoso rompicapo 3D (twisty puzzle 3D). E’ stato ideato nel 1974 dall’architetto ungherese Ernő Rubik[1], da cui il nome. Sebbene il cubo di Rubik abbia raggiunto il picco della sua popolarità all’inizio degli anni ’80, è ancora largamente utilizzato. Molti appassionati continuano a confrontarsi in competizioni internazionali nel tentativo di risolvere il cubo di Rubik nel tempo minore possibile e in varie categorie.

Nella C&EN newsletter del 9 agosto scorso, Bethany Halford, col titolo “Rubik’s cube with a chemical twist” [1], informa che un gruppo di ricercatori chimici ha pubblicato una versione chimica del cubo di Rubik [2]. Racconta Halford:

Nel gennaio 2018, Jonathan Sessler[2] (Università del Texas a Austin) era a una riunione che presentava il lavoro svolto dal suo laboratorio realizzando modelli 2D da lastrine di idrogel colorati. Philip A. Gale[3], un chimico dell’Università di Sydney, specializzato in chimica supramolecolare e post-dottorato nel laboratorio di Sessler negli anni 1995-97, lo sfidò a trasformare queste lastrine in un cubo di Rubik. Afferma Gale [1]: “La forma delle matrici di gel di Jonathan mi hanno ricordato la faccia di un cubo di Rubik, mi chiedevo se sarebbe stato possibile costruire un cubo funzionante formato da blocchi di gel che avrebbero potuto essere facilmente riconfigurati”.

Jonathan Sessler e Philip A. Gale

Sessler accettò la sfida e affidò il progetto a Xiaofan Ji ricercatore post-dottorato. Il compito si rivelò una sfida tremenda più del previsto. Ji ha avuto problemi nella sintesi di idrogel con i sei colori necessari per realizzare un cubo di Rubik.

Ben Zhon Tang

Fu solo quando Ji chiese la collaborazione del gruppo del prof. Ben Zhong Tang[4] dell’Università di Scienza e Tecnologia di Hong Kong, che furono scoperti composti che, grazie all’aggregazione, inducevano la fluorescenza quando incorporati in idrogel (AIE Aggegation-Induced Emission), figura 1.

Figura 1. Fotografie di sospensioni acquose di composti AIE (da Da S-1 a S-6: sospensioni blu, verdi, gialle, arancioni, rosse e bianche, rispettivamente) e i corrispondenti idrogel AIE.[2]

Il secondo passo consistette nell’assemblare le lastrine in cubetti con le facce diversamente colorate. Ciò venne realizzato facendo aderire le piastrine fra loro, infatti gli idrogel formano legami incrociati di forza variabile col tempo. Un tempo di contatto di 24 ore garantisce la stabilità della struttura. I cubetti di questi idrogel vennero quindi fatti aderire per 1 ora in una struttura simile a un cubo di Rubik, (RC). Ciò produsse un blocco 3 × 3 × 3 (RC) in cui i singoli blocchi di gel fluorescenti aderiscono debolmente l’uno all’altro. Come conseguenza, è possibile ruotare anche gli strati 1 × 3 × 3 che compongono l’RC orizzontalmente o verticalmente per realizzare nuove forme (figura 2).

Figura 2. Fotografie che mostrano a) la formazione dell’idrogel HG-C attraverso l’adesione macroscopica dell’idrogel HG-0 e degli idrogel AIE HG-1 – HG-6 con ricottura per 24 ore, b) la formazione di un idrogel RC simile a un cubo di Rubik attraverso l’adesione macroscopica per 1 ora di singoli blocchi HG-C di idrogel (3 × 3 × 3), c) idrogel RC fatto rotolare a mano.[2]

La figura 3 mostra le successive rotazioni di 90° su un cubo di Rubick (a sinistra) e il suo analogo chimico (RC) (a destra).

Figura 3 [2]

C’è però un problema: dopo 24 ore, il cubo di Rubik chimico si blocca in quella data posizione. Lo stesso meccanismo che ha permesso al gruppo di ricerca di unire le tessere colorate ha infatti reso il gioco non più giocabile. Dice Sessler: “Fondamentalmente abbiamo realizzato un materiale che, come il gesso di Parigi o l’argilla, nel tempo diventa più duro”.

Anche se ricreare il giocattolo alla moda è stato divertente, Sessler afferma che non è il suo obiettivo finale. Vorrebbe realizzare piastrelle di materiali morbidi e intelligenti che funzionano come i materiali fluorescenti di Tang cambiando colore in presenza di stimoli chimici. Tali piastre potrebbero comunicare informazioni mediche quando vengono posizionati sulla pelle di una persona o guidare robot che eseguono reazioni chimiche, come ad es. una titolazione acido-base.

Infine, ecco il commento di Gale: “È un lavoro elegante e apre un nuovo approccio alla produzione di sensori”, sono lieto che abbiano affrontato la sfida.

Desidero ringraziare Bethany Halford, senior correspondent of ACS C&EN newsletter, per questa notizia che mi ha condotto a approfondire l’argomento sull’articolo originale del gruppo di ricerca cino-americano.

Bethany Halford

Prima di diventare senior correspondent di C&EN, Helford è stata un chimico organico di sintesi, diceva di essere una scultrice su scala molto piccola. Ora scolpisce storie, particolarmente quelle più strane.

Bibliografia

[1] B. Halford, Rubik’s cube with a chemical twist., C&EN news, August 9, 2019.

[2] Xiaofan Ji et al, A Functioning Macroscopic “Rubik’s Cube” Assembled via Controllable Dynamic Covalent Interactions., Adv. Mater. 2019, DOI: 10.1002/adma.201902365

 

[1] Ernő Rubik (1944-) architetto e scultore ungherese, insegna all’Istituto Universitario d’Arte e Design di Budapest.

[2] Jonathan Sessler (1956-), statunitense, è professore di chimica all’Università del Texas ad Austin. È noto per il suo lavoro pionieristico sulle porfirine espanse e le loro applicazioni in biologia e medicina.

[3] Philip Alan Gale (1969-), chimico britannico, è attualmente direttore della School of Chemistry dell’Università di Sydney. È noto per il suo lavoro sulla chimica supramolecolare degli anioni.

[4] Ben Zon Tang, direttore del Dipartimento di Chimica, The Hong Kong University of Science and Tecnology, esperto di polimeri funzionali e di Aggregate-Induced Emission. Il suo gruppo è costituito da 26 ricercatori.

Numeri di ossidazione: fra topologia e meccanica quantistica.

19 agosto, 2019 - 09:30

Claudio Della Volpe

Faccio la mia solita premessa; non sono uno specialista del tema di cui vi parlo oggi; sono solo un lettore curioso; potrei commettere errori; e dunque mi aspetto delle “generose” correzioni; diciamo che se ci fossero più colleghi disposti a fare divulgazione ci sarebbero meno errori. Avrei è vero potuto chiedere una intervista ai due colleghi di cui parlo, ma la questione base è il linguaggio da usare; la topologia è astrusa per i fisici, e ancor più per noi chimici. Questo è un tentativo di parlarne a partire da quello che ne sa un povero chimico.

In un recente articolo pubblicato su Nature Physics i due colleghi della SISSA, Federico Grasselli e Stefano Baroni hanno dimostrato che i numeri di ossidazione che usiamo tutti i giorni e che insegniamo agli studenti fin dal liceo sono una della grandezze basilari della meccanica quantistica ed hanno natura topologica, sono quantità legate alla topologia del sistema. 

Non temete di trovare quasi incomprensibile perfino l’abstract del lavoro; il nostro linguaggio è diverso da quello dei fisici teorici; cercherò di renderlo più amichevole sia per i meno esperti che per il grande pubblico.

Ad un primo esame potrebbe sembrare che i numeri di ossidazione siano solo l’ennesimo strumento euristico che la Chimica si è inventato e che ne rende possibile una relativa indipendenza dalla Meccanica Quantistica; molti colleghi sottolineano spesso questo aspetto base della Chimica. Ed hanno ragione. La Chimica che conosciamo, che studiamo dal Liceo e i cui principi base si possono studiare anche alle elementari (il nostro post più letto scritto dalla sempreverde Silvana Saiello: https://ilblogdellasci.wordpress.com/2013/06/06/chimica-alle-elementari/) è uno strumento euristico potentissimo; tuttavia è altrettanto vero che faticosamente la Scienza riscopre che questo strumento euristico è nondimeno profondamente preciso: è la Chimica, bellezza!!

Questo è appunto il caso dei numeri di ossidazione. Ovviamente la Meccanica Quantistica (MQ) è in grado di andare al di là e vedremo quali sono le rivoluzionarie conclusioni dell’articolo di Grasselli e Baroni.

Non temiate di immergevi in queste acque oscure.

Il numero di ossidazione (NO) o di ossidoriduzione ha una definizione empirica: è la differenza tra il numero di elettroni di valenza dell’atomo considerato e il numero di elettroni che ad esso rimangono dopo aver assegnato tutti gli elettroni di legame all’atomo più elettronegativo di ogni coppia. Non esisteva fino a questo punto una definizione ottenibile da principi primi.

Esiste una definizione formale nel Goldbook (http://goldbook.iupac.org/terms/view/O04365), ma si tratta comunque di una definizione empirica che non discende da principi primi:

OS of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds.

Esistono una serie di lavori pubblicati negli ultimi anni che cercano di rispondere al problema se il NO sia una grandezza che possa andare al di là della definizione empirica datane nel GoldBook. Per esempio Inorg. Chem. 2011, 50, 10259–10267 oppure A.J. Webster et al., Polyhedron (2015), http://dx.doi.org/10.1016/j.poly.2015.11.018

In entrambi i casi si usa il concetto dell’occupazione di orbitale; nel secondo lavoro la cosiddetta matrice di occupazione consente di ottenere un autovalore che corrisponderebbe al NO. Nel primo si cerca addirittura di definire un operatore corrispondente ma sempre a partire dalla matrice di occupazione; si tratta comunque di proposte finora non condivise o comunque di proposte che cercano appunto di dare al NO la dignità di quantità basica della MQ. Un altro lavoro che vale la pena di citare per chi se la sente di approfondire e di Jiang e coll. PHYSICAL REVIEW LETTERS 108, 166403 (2012) in cui si affronta il problema di una definizione formale a partire da principi primi del NO ma solo per lo stato solido, mentre il lavoro dei colleghi della SISSA è più generale.

Il lavoro di Grasselli e Baroni scoprendo la natura teorica di questa grandezza fa passare la scoperta euristica ad un livello di concetto teorico.

Per arrivare a capire un po’ la cosa dobbiamo partire dalla topologia, un argomento di cui ci siamo già occupati in altri post (https://ilblogdellasci.wordpress.com/2016/06/13/dai-quadrati-magici-alla-topologia-molecolare-parte-3-wiener/)

 

La topologia o studio dei luoghi (dal greco τόπος, tópos, “luogo”, e λόγος, lógos, “studio”) è lo studio delle proprietà delle figure e delle forme che non cambiano quando viene effettuata una deformazione senza “strappi”, “sovrapposizioni” o “incollature”. (da wikipedia)

Per la topologia una sfera o un cubo sono figure equivalenti o come si dice tecnicamente omeomorfe. Così anche una tazza del caffè ed una ciambella. Una tazza a due manici è equivalente ad una pentolona a due manici od anche ad un otto, mentre un brezel, comune dalle mie parti, equivarebbe ad un mastello a tre manici.

 

Oggetti come una sfera o un cubo sono topologicamente “triviali” mentre non lo sono quelli come una tazza o un brezel. Gli oggetti omeomorfi , cioè che possono essere ridotti l’uno all’altro con modifiche continue si corrispondono in modo “intero”, hanno una caratteristica intera che è loro specifica, per esempio il numero di “buchi” che posseggono; questo numero non può essere modificato in modo graduale, ma solo discontinuo, costituisce una sorta di transizione di fase da un tipo di oggetto all’altro, una transizione topologica (sottolineata nell’immagine sopra dal termine POW). Il numero di buchi può essere definito in modo formale e si chiama genere della superficie.

La topologia non è un astruso argomento matematico, come abbiamo visto per esempio nei post dedicati alla topologia molecolare, la forma delle molecole, l’uso dei grafi nella previsione delle proprietà delle molecole.

La topologia è un argomento che negli ultimi anni è stata ripetutamente presente nelle presentazioni dei Nobel; oltre quella dei Fisici del 2016, possiamo ricordare la presentazione del Chimico Premio Nobel Jean Pierre Sauvage sempre nel 2016 che si intitolava: From Chemical Topology to Molecular Machines

Ma dirò di più. La topologia è una disciplina che applichiamo costantemente ma spesso senza accorgercene; riconoscere il suo ruolo quotidiano provoca un effetto di straniamento.

Per esempio la topologia è lo strumento quando scegliamo un percorso su una mappa della metro, dove non compaiono le informazioni metriche, le distanze, scegliamo un colore che corrisponde ad una certa forma, una certa topologia.

Fare un nodo alle scarpe è un processo topologico in cui le misure esatte non contano, la metrica non conta ma il modo di avvolgere le cose sì.

Molti esseri viventi, compresi noi, hanno la medesima topologia, un tubo digerente, sostanzialmente un toro, non dissimili da un verme che è una delle forme di vita più antiche che si conoscano, ma diverse da una singola cellula.

L’albero dell’evoluzione è una struttura topologica, non metrica.

Passare dalla descrizione della Terra come piatta ad una come sfera è una scelta topologica, o se volete una scoperta topologica.

Colorare le carte geografiche con colori diversi è un problema di topologia (il teorema dei 4 colori).

Dunque la topologia non è una cosa astratta, affatto; comunque non più dell’algebra o di altre parti della matematica.

Entriamo nell’argomento definendo in modo più approfondito un numero quantico topologico: qualunque quantità che prende uno solo di un set finito di valori sulla base di considerazioni topologiche legate al sistema in studio, anche non in casi legati alla meccanica quantistica. Possono essere per esempio numeri che compaiono nelle soluzioni di equazioni del sistema anche differenziali la cui forma dipenda da considerazioni topologiche.

La scoperta e l’analisi di queste quantità ha significato la assegnazione del premio Nobel per la Fisica 2016 a Thouless, Haldane e Kosterlitz.

Si tratta di quantità che a differenza dei comuni numeri quantici NON dipendono dalla simmetria del sistema, sono insensibili a tale simmetria; la simmetria è un fatto “metrico”, dipende dalle misure esatte dell’oggetto, mentre la topologia no. I numeri quantici che conosciamo dipendono dalla simmetria, quelli topologici no.

Quanto sia importante l’approccio topologico si comprende da lavori precedenti quello di cui stiamo parlando per esempio Topological quantum chemistry di Bradlyn e coll, Nature 547, 298 (2017) che tenta di classificare la natura topologica della struttura in bande (di conduzione essenzialmente) di tutti i materiali conosciuti in questo campo (oltre 200.000) suddivisi nei 230 gruppi di simmetria.

Il problema dunque è che i fisici teorici ci stanno indicando una strada (apparentemente) nuova: quanto è importante la topologia nella chimica? E’ un argomento che come blog abbiamo già sfiorato in precedenti post e abbiamo visto che certi aspetti come la previsione di proprietà sono ben consolidati. Qua ne stiamo allargando il ruolo. Personalmente ritengo che la topologia dovrebbe diventare un argomento comune di studio per i neochimici.

Dice Davide Castelvecchi su Le Scienze di qualche anno fa (traducendo un articolo da Scientific American)

Alcune delle proprietà fondamentali delle particelle subatomiche sono intrinsecamente topologiche. Prendiamo, per esempio, lo spin dell’elettrone, che può puntare verso l’alto o verso il basso. Capovolgiamo un elettrone dall’alto verso il basso, e poi ancora verso l’alto: si potrebbe pensare che questa rotazione di 360° riporti la particella al suo stato originale. Ma non è così.

Nel strano mondo della fisica quantistica, un elettrone può essere rappresentato anche come una funzione d’onda che codifica informazioni sulla particella, come la probabilità di trovarla in un determinato stato di spin. In modo controintuitivo, una rotazione di 360° sfasa la funzione d’onda, in modo che le creste e gli avvallamenti si scambiano. Ci vuole un’altra rotazione di 360° per portare finalmente l’elettrone e la sua funzione d’onda ai loro stati iniziali.

Questo è esattamente ciò che accade in una delle stranezze topologiche preferite dai matematici: il nastro di Möbius, che si realizza dando una singola torsione a un nastro e poi incollando tra loro le sue estremità. Se una formica, camminando sul nastro, facesse un giro completo, si troverebbe sul lato opposto rispetto al punto in cui ha cominciato. Deve fare un altro giro completo prima di poter tornare alla sua posizione iniziale.

La situazione della formica non è solo un’analogia per ciò che accade alla funzione d’onda dell’elettrone: si verifica veramente all’interno di uno spazio geometrico astratto fatto di onde quantistiche. È come se ogni elettrone contenesse un minuscolo nastro di Möbius che porta con sé un po’ di topologia interessante. Tutti i tipi di particelle che condividono questa proprietà, quark e neutrini compresi, sono conosciuti come fermioni; quelli che non la condividono, come i fotoni, sono classificati come bosoni.

Torniamo al nostro argomento. L’esempio dello spin chiarisce che le proprietà topologiche possono appartenere allo spazio a cui le funzioni che descrivono il comportamento del sistema si riferiscono, lo spazio delle configurazioni in cui tali funzioni sono definite. E’ un modo di ragionare poco intuitivo ma molto efficiente. Dobbiamo immaginare lo spazio multidimensionale in cui le funzioni d’onda sono definite e considerarne le caratteristiche topologiche, una cosa non banale assolutamente.

Nella parte centrale del lavoro Grasselli e Baroni fanno esattamente questo, ossia analizzano le proprietà dello spazio delle configurazioni delle funzioni d’onda

Quando si studiano sistemi come un sale fuso si usa fare dinamica molecolare di particelle alle quali poi si applica la meccanica quantistica; data la difficoltà di analizzare sistemi con grandi numeri di particelle si usa un trucco contabile che è la periodicità, ossia si usano celle di opportuna dimensione con la proprietà che le traiettorie delle particelle che escono da una parte rientrano dalla parte opposta; ora facendo questo lo spazio fisico studiato è quello euclideo normale, ma lo spazio delle configurazioni delle variabili non lo è; come rappresentato in figura tale spazio delle configuazioni è invece non banale, come quello di un toro (vedi figura). In queste condizioni essi calcolano la conducibilità cosiddetta adiabatica, ossia con trasformazioni che seguono il cosiddetto teorema di Born e Fock che recita (più o meno):

Un sistema quanto meccanico soggetto a condizioni esterne che cambiano gradualmente adatta la sua forma funzionale, ma quando soggetto a condizioni rapidamente variabili e non ha il tempo di adattarsi la densità spaziale di probabilità rimane invariata.

Essi ottengono una espressione (per la cronaca la eq. 11 del lavoro) da cui si conclude che

La conducibilità elettrica adiabatica di un liquido può essere ottenuta esattamente sostituendo nella definizione di conducibilità (ossia la derivata rispetto al tempo del vettore polarizzazione macroscopica del sistema, andatevi a riguardare gli appunti di chimica –fisica 2!!) al cosiddetto tensore di Born o carica di Born di ciascun atomo (che è un numero reale dipendente dal tempo) una carica topologica scalare, che è un intero non dipendente dal tempo, ma solo dalla specie atomica considerata.

Nella seconda parte del lavoro gli autori dimostrano mediante esperimenti numerici che questa carica topologica è equivalente al numero di ossidazione dell’atomo in questione.

E questa ammetterete che è una conclusione eccezionale; senza saperlo noi chimici abbiamo usato la topologia del sistema per valutarne il comportamento e lo abbiamo fatto a partire da un approccio euristico che chiamiamo chimica! Oggi la MQ i dimostra che quel numero è una delle “costanti del moto” di quegli atomi!

Le conclusioni del lavoro sono abbastanza interessanti anche dal punto di vista pratico, dato che in questo modo si risparmia molto tempo di calcolo, non dovendosi più calcolare i tensori di Born; ma lo sono anche per i fenomeni che prevedono.

In particolare, scrivono Grasselli e Baroni (vi lascio la frase intera anche per gustare il modo di scrivere dei fisici teorici):

Our analysis shows that the coexistence of different oxidation states for the same element in the same system may be due to the exis- tence of zero-gap domains in the atomic configuration space that would be crossed by any atomic paths interchanging the positions of two identical ions in different oxidation states. While this sce- nario is probably the most common to occur, a different, more exotic, one cannot be excluded on purely topological grounds and its existence is worth exploring. In fact, when strong adiabaticity breaks, it is possible that two loops with the same winding num- bers could not be distorted into one another without closing the electronic gap, and they may thus transport different, yet integer, charges. While in the first scenario closing the electronic gap while swapping two like atoms would simply determine the chemically acceptable inequivalence of the oxidation numbers of two iden- tical atoms in different local environments, the second scenario would imply the chemically wicked situation where two different oxidation states can be attached to the same atom in the same local environment. As a consequence, one could observe a non-vanishing adiabatic charge transport without a net mass transport (see the discussion in ref. 33)

(sottolineatura mia)

A proposito dell’ultima frase tuttavia devo dire che da chimico che insegna elettrochimica da molti anni questo fenomeno di trasportare carica senza trasportare massa mi sembra ben conosciuto: mi ricorda molto da vicino il meccanismo “al salto” proposto per spiegare la conducibilità di protoni e ioni idrossido in acqua, chiamato spesso meccanismo di Grotthus. In sostanza la struttura elettronica si riarrangia lungo catene di diverse molecole di acqua legate da legami idrogeno e il protone non si sposta ma la sua carica si. Un altro esempio (di cui sono debitore a Vincenzo Balzani) è nella reazione chetoenolica dove succede una cosa analoga: nel 2° step della catalisi acida, la carica si attacca e migra poi da un legame all’altro, questa volta dentro un certa molecola , ma sempre senza spostamento di massa.

Se è così forse la chimica “euristica” ha ancora qualcosa da raccontare alla fisica teorica: chimica e topologia…. (ovviamente a patto di mettersi a studiare).Il meccanismo di Grotthus, notate come la carica migri senza spostamento di massa anche su catene lunghe di molecole di acqua legate da legami idrogeno (se non vedete in azione l’immagine, cliccateci sopra).

Ringrazio Vincenzo Balzani e mia figlia Daniela per gli utili suggerimenti.

Riferimenti:

https://www.lescienze.it/news/2019/07/01/news/spiegazione_quantistica_numero_ossidazione_sissa-4465208/

https://www.reccom.org/2019/05/23/materia-topologica-nuova-fisica/

http://www.lescienze.it/news/2017/07/22/news/strana_topologia_plasma_fisica-3610402/

https://www.nature.com/articles/nature23268

http://www-dft.ts.infn.it/~resta/gtse/draft.pdf   di Raffaele Resta, Questo è un testo ottimo! Ve lo consiglio.

Author(s): Erica Flapan  Series: Outlooks Publisher: Cambridge University Press, Year: 2000  ISBN: 0521664829,9780521664820  When Topology meets Chemistry

Biopiattaforma

16 agosto, 2019 - 08:37

Mauro Icardi

Con il nome di “biopiattaforma” è stato dato il via ad un progetto che vede coinvolte le società CAP di Milano (Gestore del servizio idrico integrato nelle province di Milano, Monza-Brianza, Varese e Como) e la CORE Spa che gestiva l’inceneritore di Sesto San Giovanni. Quest’ultimo, giunto al termine del suo periodo operativo, verrà convertito in un impianto di trattamento dei fanghi di depurazione di tutti gli impianti gestiti dal gruppo CAP. Il quantitativo di fanghi trattati sarà di 65.000 tonnellate/anno di fanghi umidi pari a 14.100 tonnellate/anno di fanghi essiccati. Da essi si ricaveranno 11.120 MWh/anno di calore per il teleriscaldamento e fosforo come fertilizzante. Il 75 % dei fanghi verrà convertito in calore, e dal restante 25% sarà ricavato fosforo per il riutilizzo agricolo come fertilizzante. Verrà realizzato anche un impianto per il trattamento della frazione umida dei rifiuti urbani (FORSU) che potrà alimentare i digestori anaerobici che verranno realizzati nell’area dell’ex inceneritore.

Questa linea potrà trattare 30.000 tonnellate/anno di rifiuti umidi (FORSU) per la produzione di biometano. Nell’impianto sarà trattata la FORSU proveniente dai comuni di Sesto San Giovanni, Pioltello, Cormano, Segrate, Cologno Monzese, cioè i cinque comuni lombardi che sono soci di CORE. Il progetto prende spunto da quanto venne già indicato dall’European Enviroment Agency (Agenzia Europea per la protezione ambientale) nel 2011. I rifiuti biodegradabili conferiti in discarica producono metano quando il materiale organico si decompone anaerobicamente. Anche se questo gas serra viene captato e utilizzato per generare energia, gran parte di esso fuoriesce nell’atmosfera dove ha un potente effetto di forzatura climatica. La riduzione della quantità di rifiuti destinati alle discariche è quindi un obiettivo importante delle politiche dell’UE in materia di rifiuti. Tuttavia, il volume dei rifiuti continua ad aumentare in tutta l’UE. Il cittadino medio dell’UE ha prodotto in media 468 kg di rifiuti solidi urbani nel 1995, che sono saliti a 524 kg nel 2008. Tale cifra potrebbe salire a 558 kg pro capite entro il 2020, a meno che non vengano messe in atto politiche efficaci per ridurre la produzione di rifiuti.

L’intera operazione che è al momento giunta alla fase di inizio lavori, è stata condivisa con la cittadinanza dei comuni interessati, e comunque aperta alle considerazioni ed osservazioni tramite un’apposita piattaforma dove si sono potuti esprimere sia i singoli cittadini che le associazioni.

I fanghi con un tenore di secco pari al 22- 27% con un tenore massimo del 40% saranno stoccati in appositi silos. Successivamente avviati verso un pre-essicatore. Il principio di funzionamento è quello di fare aderire un sottile strato di fango disidratato a contatto con una parete metallica molto calda (es. riscaldata sull’altro lato da vapore oppure olio diatermico). In questo modo la parte di acqua ancora contenuta nei fanghi disidratati evapora molto rapidamente ed il tempo di contatto del fango con la parete calda determina la percentuale di acqua evaporata. Una parte del calore utilizzato per il pre-essiccamento dei fanghi potrà essere recuperato condensando i vapori generati dal processo di essiccamento dei fanghi stessi.

I vapori di processo derivanti dal pre-essiccamento del fango verranno avviati verso un trattamento di deodorizzazione, passando attraverso una torre di lavaggio, che ha il compito di abbattere tutte le sostanze incondensabili ancora presenti nei vapori stessi e responsabili dei cattivi odori. Solo dopo questa fase i vapori saranno scaricati in atmosfera. Il trattamento termico dei fanghi sarà effettuato con impianto a letto fluido. La parte superiore dell’impianto costituisce la camera di post- trattamento, nella quale, in condizioni altamente turbolente, ha luogo la completa ossidazione delle componenti organiche del fango da trattare. Una volta abbandonata la camera di post- trattamento, i fumi verranno raffreddati in una prima sezione di recupero energetico, destinata al preriscaldamento dell’aria di trattamento. Dopo questa prima sezione di recupero energetico il calore ancora contenuto nei fumi verrà recuperato in una seconda sezione di recupero termico, dove sarà utilizzato per produrre vapore. A valle di questa sezione sarà costruita la sezione di trattamento fumi, composta da varie fasi di trattamento. I fumi di combustione attraverseranno un ciclone, dove verrà realizzato il trattamento di depolverizzazione grossolana. Successivamente un reattore dove si realizzerà la desolforazione, e l’abbattimento dei microinquinanti attraverso il passaggio su carboni attivi. I passaggi successivi del trattamento dei fumi saranno il passaggio attraverso filtri a maniche, e l’abbattimento degli ossidi di azoto su un catalizzatore (Ossido di titanio o di vanadio).

Da questa linea di trattamento dei fanghi sarà ceduto calore al sistema di teleriscaldamento del comune di Sesto San Giovanni.

Per quanto riguarda il trattamento della FORSU si effettuerà un pretrattamento dei rifiuti, che consisterà nella rimozione di materiale estraneo ( es (plastiche, sabbie, vetri, ossa) e la massa sarà omogenizzata fino a produrre un materiale adatto all’alimentazione dei due digestori anaerobici. La cosiddetta “polpa”, cioè la frazione umida omogeneizzata verrà stoccata in serbatoi polmone, per alimentare in continuo i digestori. Questa continuità di alimentazione è uno dei fattori più importanti per la conduzione corretta del processo di digestione. Il biogas prodotto sarà purificato dalla CO2 e dell’H2S tramite adsorbimento fisico (setacci molecolari). In sostanza il biogas pressurizzato a 4-7 bar viene introdotto in una unità di adsorbimento dove il setaccio molecolare, generalmente costituito da carbonio o zeolite, adsorbe i gas di scarico. Avendo il biometano un grado di adsorbimento inferiore agli altri gas contenuti nel biogas, la maggior parte di quest’ultimo supera il setaccio molecolare e viene avviato allo stoccaggio. Una parte del biometano prodotto verrà immesso nella rete di distribuzione locale, mentre la rimanente parte verrà compressa ed utilizzata per il rifornimento degli automezzi di servizio. Importante ricordare che il biometano purificato dai composti odorigeni presenti normalmente in esso quali composti organici volatili, aldeidi e chetoni, dovrà essere nuovamente odorizzato, con tetraidrotiofene o miscele di mercaptani. Sembra un controsenso, ma è necessario visto che sarà immesso nelle reti di distribuzione, essendo il metano puro completamente inodore.

La strategia come si vede è quella di trasformare gli impianti di depurazione in strutture a maggior complessità tecnica, ma dalle quali si possano recuperare nutrienti e materia dai residui di valorizzazione dei fanghi e della frazione organica dei rifiuti. In questo modo si potranno recuperare prodotti quali fosforo principalmente ma anche bio-polimeri, cellulosa ed azoto. In modo da trasformare i depuratori urbani in impianti di recupero, con forti impatti positivi economici e sociali, oltre che ambientali.

Negli anni mi sono molto appassionato al tema. E vedo questo progetto in corso di realizzazione come un notevole passo in avanti verso la realizzazione di filiere di economia circolare. Altrimenti sarebbe un’intollerabile spreco di risorse che ancora si possono recuperare dagli impianti di trattamento acque.

Link di approfondimento

http://www.biopiattaformalab.it/progetto-di-simbiosi-industriale/#materiali

https://www.eea.europa.eu/highlights/big-potential-of-cutting-greenhouse?&utm_campaign=big-potential-of-cutting-greenhouse&utm_medium=email&utm_source=EEASubscriptions

https://ilblogdellasci.wordpress.com/2017/05/19/un-tema-emergente-depuratori-come-bioraffinerie/

Elementi della tavola periodica: Silicio, Si.

14 agosto, 2019 - 15:31

Rinaldo Cervellati

Silicio (Silicon)*

*Silicon è la versione inglese del termine Silicio. La sua assonanza con la parola “silicone” ha dato luogo a numerose, talvolta divertenti “bufale” mediatiche, sintomo purtroppo di ignoranza chimica dei giornalisti nostrani. Ne ho parlato nel post Silicio, siliconi e dintorni del 12/09/2016

Il Silicio è l’elemento n. 14 della Tavola periodica, ed è il secondo elemento per abbondanza (27,7%) nella crosta terrestre. Nella Tavola si trova collocato sotto il Carbonio con il quale condivide diverse analogie come la tetravalenza (numero di ossidazione +4) e la possibilità di formare lunghe catene, ad esempio:

Ciò ha quasi certamente influenzato gli scrittori di fantascienza che hanno immaginato pianeti basati sul silicio al posto del carbonio, ed esseri extraterrestri con organismi al silicio. Tuttavia oggi si ritiene praticamente impossibile o quantomeno pochissimo probabile un tale evento (v. nota in corsivo).

Invece è quasi certo che il nome silicio derivi dal latino silex o silicis che letteralmente si traduce in selce. Il silicio non si trova in natura libero, ma si presenta principalmente come diossido (SiO2) e come silicati.

Sabbia, quarzo, cristallo di rocca, ametista, agata, pietra, diaspro, opale, ecc. sono alcune delle forme in cui appare il diossido (o biossido) di silicio. Alcune di esse, in forma cristallina, sono classificate pietre semipreziose. Da sinistra a destra: sabbia, quarzo, ametista, opale (lavorato)

I silicati sono la classe di minerali caratterizzati dalla presenza del gruppo tetraedrico (SiO4)4−:

Struttura dell’unità tetraedrica dei silicati.

Ossigeno e silicio sono gli elementi più abbondanti della crosta terrestre, il che rende i silicati i minerali più diffusi sul nostro pianeta. Si trovano all’interno di rocce magmatiche (es. granito), metamorfiche (es. vesuvianite) e sedimentarie (es. argillite).

Il granito è un insieme dei minerali quarzo (SiO2), feldspati e miche (silicati di potassio, sodio, calcio e altri).

La vesuvianite è un sorosilicato costituito da silicati di calcio, magnesio e alluminio.

L’argillite è costituita da caolinite, montmorillonite, silicati idrati di alluminio.

Differiscono sia per il numero di unità tetraedriche e per il modo in cui queste sono legate fra loro, il che ne determina la struttura.

Da sinistra a destra: granito, vesuvianite e argillite

Quando la cella elementare contiene solo l’unità tetraedrica SiO24- ripetuta n volte il minerale corrispondente è l’olivina (silicato di ferro e magnesio (Mg, Fe)2SiO4).

Olivina

Il silicio è anche il componente principale di una classe di meteoriti noti come “aeroliti” ed è pure componente della tectite, un vetro naturale di origine incerta.

Humphry Davy[1] nel 1800 fu il primo a ritenere che la silice fosse un composto e non un elemento. Più tardi, nel 1811, Gay Lussac[2] e Thenard[3] probabilmente prepararono il silicio amorfo impuro riscaldando il potassio con tetrafluoruro di silicio. La sua scoperta è generalmente attribuita a Berzelius: nel 1824 riuscì a preparare il silicio amorfo con lo stesso metodo usato dai due chimici francesi, ma purificò il prodotto rimuovendo i fluorosilicati mediante ripetuti lavaggi.

Nel 1884 Deville[4] ottenne per la prima volta silicio cristallino, la seconda forma allotropica di questo elemento.

Silicio cristallino e amorfo: immagini (sopra) e strutture (sotto)

Il silicio è un non metallo, nella sua forma cristallina ha un colore grigio e lucentezza metallica, ma il colore può variare. È relativamente inerte, reagisce con gli alogeni (fluoro, cloro) e con gli alcali. Non è attaccato dagli acidi, tranne che dall’acido fluoridrico. È un ottimo semiconduttore.

Il silicio è preparato commercialmente per riscaldamento della silice a elevato grado di purezza, in una fornace elettrica usando elettrodi di carbonio. A temperature superiori a 1900 °C il carbonio riduce la silice a silicio (in linguaggio chimico: SiO2 + C ® Si + CO2). Il silicio liquido si raccoglie sul fondo della fornace, viene quindi prelevato e raffreddato. Il silicio prodotto con questo processo è chiamato silicio di grado metallurgico ed è puro al 98%.

Per ottenere un più elevato grado di purezza, necessario ad es. per dispositivi elettronici a semiconduttore, è necessario praticare un’ulteriore purificazione, ad esempio con il metodo Siemens, che consiste nel far reagire il silicio metallurgico con acido cloridrico, chimicamente:

Si + 3HCl –> SiHCl3 + H2 (1)

Il composto ottenuto, un gas chiamato triclorosilano, viene fatto condensare e successivamente distillato accuratamente. A questo punto viene fatta la reazione inversa della (1):

SiHCl3 + H2 –> Si + 3HCl (2)

Il silicio policristallino che si ottiene dalla reazione (2) può raggiungere una purezza maggiore del 99,99%.

Per ottenere monocristalli ancora più puri, si ricorre al processo Czochralski[5], una tecnica che permette di ottenere la crescita di monocristalli di estrema purezza, oggi impiegata principalmente nella crescita di blocchi monocristallini di silicio che si ottengono sottoforma di pani cilindrici che raggiungono la purezza del  99.9999999%.

La principale applicazione odierna del silicio dipende dalla sua proprietà di semiconduttore intrinseco o puro. Per aumentarne questa caratteristica viene “drogato” con piccole quantità di arsenico, fosforo, gallio o boro. Viene utilizzato in transistor, pannelli o celle solari, praticamente in tutte le apparecchiature a semiconduttori, utilizzate in elettronica e nelle altre applicazioni a alta tecnologia.

Diodo LED (a sinistra), pannello solare (a destra)

Poiché il silicio è il principale semiconduttore di tutta l’industria elettronica, la regione Silicon Valley, California, USA, nota per le numerose aziende di informatica ed elettronica, prende il suo nome da questo elemento: Valle del Silicio in italiano.

Il silicio è inoltre un costituente di alcuni tipi di acciai; il suo limite di concentrazione è del 5%, poiché oltre si ha un notevole abbassamento della resilienza a causa del potenziale di accrescimento della grana cristallina. Rende inoltre possibile separare la grafite negli acciai anche già a partire da concentrazioni di carbonio maggiori di 0,50%. All’1-2% è presente negli acciai per molle, dove ne accresce il limite elastico, avvicinandolo a quello di rottura.

Acciaio al silicio

Il biossido di silicio, nelle sue forme di sabbia (granuli da 0.06 a 2 mm) e di argilla (sedimento non solidificato con granuli inferiori a 2 μm), è impiegato da tempi immemorabili come materiale per l’edilizia. Il componente principale del cemento Portland è la silice della sabbia, che è anche il componente principale del vetro.

In forma di pietra lavorata (selce) è un’importantissima testimonianza dei primi insediamenti umani. Le tecniche lavorative, in particolare la scheggiatura, consentono di individuare diversi periodi della preistoria. L’uso è continuato fino a periodi relativamente recenti. Nel XVII secolo era ancora adoperata, specialmente presso i popoli delle Americhe, per fabbricare coltelli e punte di frecce. La selce, come pietra focaia, è stata fondamentale anche per il funzionamento degli acciarini manuali almeno dall’alto medioevo e, dal XVII al XIX secolo, anche per far scintillare i meccanismi di accensione delle armi da fuoco, fino all’avvento delle armi a percussione.

Silice e silicati sono la base dei materiali refrattari usati nei forni e fornaci per elevate temperature, i silicati sono impiegati anche nella fabbricazione di terraglie e smalti.

Il composto binario fra silicio e carbonio, carburo di silicio (SiC), chiamato carborundum, è usato come potente abrasivo.

Anche se, come già ricordato, dei siliconi ho parlato in un precedente post, vale la pena ricordarli di nuovo per l’importanza che hanno anche nella nostra vita quotidiana.

I siliconi, noti anche come polisilossani, sono polimeri che includono qualsiasi composto sintetico costituito da unità ripetitive di silossano, che è una catena di atomi di silicio alternati ad atomi di ossigeno (⋯–Si–O–Si–O–Si–O–⋯) combinata con carbonio, idrogeno e talvolta altri elementi. Sono in genere resistenti al calore, liquidi o gommosi, e sono utilizzati in sigillanti, adesivi, lubrificanti, utensili da cucina e come isolanti termici ed elettrici. Alcune forme comuni includono olio di silicone, grasso al silicone, gomma siliconica, resina siliconica e mastice siliconico.

Molteplici usi dei siliconi

Per la sua elevata biocompatibilità il silicone, nella sua forma gel, è utilizzata in bende e medicazioni, protesi mammarie, impianti testicolari, protesi pettorali, lenti a contatto e una varietà di altri usi medici. Tuttavia occorre ricordare che iniezioni di silicone prive di stretto controllo medico o addirittura illecite inducono sempre una diffusione cronica e definitiva nel sangue con complicazioni dermatologiche che provocano gravi effetti collaterali.

La gestione del fine vita dei pannelli fotovoltaici al silicio

I rifiuti di celle solari sono destinati ad aumentare drasticamente nei prossimi decenni a causa dei milioni di pannelli solari installati ogni anno, ciascuno con una durata limitata di circa 25 anni. Alla luce di ciò, la direttiva sui rifiuti di apparecchiature elettriche ed elettroniche (RAEE) impone il riciclaggio ai produttori di pannelli solari. La fabbricazione di nuovi pannelli utilizzando componenti riciclati non solo manterrà la credibilità del settore dell’energia solare, ma ne ridurrà anche il costo in modo significativo.

Molte tecnologie attuali per riciclare il silicio delle celle solari implicano la rimozione degli strati sottili di silicio dal pannello. Una volta rimossi questi strati sono trattati con acido fluoridrico per eliminarne le impurezze. Oltre ad essere dannoso per l’ambiente, l’acido fluoridrico lo è per i lavoratori perché può penetrare nei tessuti umani causando gravi ustioni che possono portare anche alla morte.

Recentemente un gruppo di ricercatori sud coreani ha proposto un metodo eco sostenibile per il riciclaggio degli strati di silicio dai moduli fotovoltaici a fine vita senza l’impiego di acido fluoridrico [1]. In breve, dopo il recupero dello strato sottile di Si non danneggiato, l’eliminazione delle impurità procede nelle seguenti tre fasi: (i) recupero dell’elettrodo d’argento utilizzando acido nitrico (HNO3); (ii) rimozione meccanica del rivestimento antiriflesso, dello strato di emettitore e della giunzione p-n simultaneamente; (iii) rimozione dell’elettrodo di alluminio usando idrossido di potassio (KOH). In dettaglio, ecco lo schema del processo:

Schema del processo proposto in [1]

I ricercatori coreani affermano che gli strati sottili di Si così rigenerati mostrano proprietà quasi identiche a quelle degli strati vergini commerciali, e che le celle fabbricate con gli strati rigenerati mostrano un’efficienza equivalente a quella delle celle iniziali.

Un recentissimo report sulle tecniche di riciclaggio dei moduli fotovoltaici è stato pubblicato dall’International Energy Agency IEA [2].

Riciclo materiali siliconici

Esistono oggi diverse ditte specializzate nel riciclo di materiali siliconici, dagli oli, gel e schiume alle gomme indurite e molli, a stampi esauriti, prodotti divenuti obsoleti come tubi, nastri e tessuti trattati con silicone. Tutti i processi messi in atto per il riciclo terminano con la depolimerizzazione per recuperare i monomeri dei siliconi. Questi monomeri recuperati sono poi utilizzati per ottenere nuovi prodotti.

Negli Stati Uniti, la ECO U.S.A. è il principale riciclatore al mondo di siliconi come gomma siliconica. I suoi impianti di riciclaggio trasformano i rifiuti di gomme siliconiche in silicone fluido che è riciclato per fabbricare nuovi prodotti.

In breve, le fasi del processo ECO USA sono: 1. Raccolta dei rifiuti da produttori e consumatori; 2. Frantumazione dei rifiuti in piccoli pezzi da 10-15 mm.; 3. Riscaldamento a temperature elevate del granulato in opportune camere di reazione su vasta scala dove i vapori di silicone sono raccolti e filtrati, ottenendo il monomero dimetilcicloossisilano (DMC); 4. Il DMC passa attraverso un complesso processo di filtrazione e raffinazione chimica che produce un fluido siliconico di elevata purezza pronto per essere riciclato.

Ruolo Biologico

Sebbene il silicio sia facilmente disponibile sotto forma di silicati, pochissimi organismi lo usano direttamente. Le diatomee, i radiolari e le spugne silicee usano la silice biogenica come materiale strutturale per i loro scheletri. Nelle piante più avanzate, i fitoliti di silice (phytoliths opalici) sono corpi microscopici rigidi presenti nelle loro cellule. Alcune piante, ad esempio il riso, hanno bisogno di silicio per la loro crescita. È stato infatti dimostrato che il silicio migliora la resistenza delle pareti cellulari vegetali e l’integrità strutturale in alcune piante.

Vi sono anche alcune prove del fatto che il silicio è importante per il corpo umano, ad es. per unghie, capelli, ossa e tessuti cutanei. L’organismo umano ne contiene in totale una quantità stimata sui 250 milligrammi.  Studi clinici hanno dimostrato che l’assunzione di silicio dietetico aumenta la densità ossea nelle donne in premenopausa e che l’integrazione con silicio può aumentare il volume e la densità ossea nei pazienti con osteoporosi.

Integratore al silicio per ossa, unghie e capelli

Il silicio è necessario per la sintesi di elastina e collagene, contenuti in gran quantità nell’arteria aorta. Ciononostante, è difficile stabilire la sua essenzialità, perché il silicio è molto comune, e quindi i sintomi di carenza sono difficili da riprodurre. Un eccesso di silicio può invece causare emolisi dei globuli rossi e alterazioni cellulari come conseguenza diretta. La medicina erboristica, comunque, non raccomanda una fitoterapia a base di piante troppo remineralizzanti (in particolare quelle ricche di silicio) quando sono presenti lesioni ossee di tipo degenerativo (ad esempio artrosi). Assumere i silicati “organici” tramite la dieta non è tuttavia difficile. Il silicio è abbondante nell’acqua potabile, nelle cipolle, nei cavolfiori, nei fagioli, nei piselli, nelle mele e nelle fragole.

Ciclo Biogeochimico

In figura è rappresentato un diagramma di tale ciclo, tratto da [3].

Ciclo biogeochimico del silicio

Il diagramma è diviso in cinque parti: al centro la biosfera, circondata da atmosfera (in alto), litosfera e idrosfera ai lati sinistro e destro rispettivamente. La quantità totale del silicio in una sfera (ad es. litosfera) è data in kg e il numero è sottolineato. La velocità di trasferimento (flusso o tasso di scorrimento) da una sfera a un’altra è riportata in termini di kg l’anno (kg/y) e il valore è inserito in una freccia che mostra la direzione del flusso. Sono anche indicati i nomi dei principali composti o minerali coinvolti nei flussi. Poiché le attività umane (antropogeniche) oggi trasferiscono quantità di silicio a tassi significativi, questi trasferimenti antropogenici sono evidenziati da una linea tratteggiata attraverso la biosfera.

I dati quantitativi riportati sono stime basate su dati noti relativi alla composizione elementare di acqua di fiume, acqua di mare, di alcuni organismi rappresentativi (in questo caso diatomee, radiolari spugne) e le quantità totali nella crosta terrestre, nell’acqua di mare, nella biosfera, ecc.

Tali dati possono essere considerati accurati entro più o meno un ordine di grandezza [3].

Desidero infine precisare che poiché l’impatto delle attività antropogeniche può alterarli, lo studio dei cicli biogeochimici degli elementi è oggetto di continui aggiornamenti e revisioni.

Opere consultate

CRC, Handbook of Chemistry and Physics, 85th, p. 4-28-29

https://en.wikipedia.org/wiki/Silicon

https://it.wikipedia.org/wiki/Silicio

Bibliografia

[1] J. Park et al., An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication., Green Chem., 2016, 18, 1706-1714.

[2] IEA, End of Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies, pdf scaricabile al link http://www.iea-pvps.org/index.php?id=459

[3] V. Cilek (a cura di), Earth System: History and Natural Variability – Volume IV, UNESCO-EOLSS, 2009, pp. 230-232.

[1] Sir Humphry Davy (1778 – 1829) è stato un chimico della Cornovaglia (Inghilterra), noto per aver isolato, usando l’elettricità, una serie di elementi per la prima volta: potassio e sodio nel 1807; calcio, stronzio, bario, magnesio e boro l’anno successivo, oltre a scoprire la natura elementare del cloro e dello iodio. Ha anche studiato le forze coinvolte in queste separazioni, gettando le basi dell’elettrochimica. Scoprì anche le proprietà anestetiche del protossido d’azoto (ossido di diazoto N2O) usato poi come anestetico in chirurgia.

[2] Joseph Louis Gay-Lussac (1778 – 1850) fisico e chimico francese, conosciuto sopratutto per le leggi sul comportamento dei gas (Prima e Seconda legge di Gay-Lussac). Compì diversi esperimenti sulla composizione chimica dell’atmosfera terrestre e sulle variazioni nel campo magnetico terrestre con alcuni aerostati riempiti di idrogeno.

[3] Louis Jacques Thénard (1777-1857), chimico francese. Le sue ricerche spaziarono dai composti di arsenico e antimonio con ossigeno e zolfo agli eteri, acidi sebacici e alla bile. Nel 1818 scoprì il perossido di idrogeno. Nel 1810 ottenne la cattedra di chimica all’Ecole Polytechnique e alla Faculté des Sciences. Thénard era un eccellente insegnante; come lui stesso disse: il professore, gli assistenti, il laboratorio: tutto deve essere sacrificato agli studenti. Come la maggior parte dei grandi maestri pubblicò un libro di testo, il Traité de chimie élémentaire, théorique et pratique (4 voll., Parigi, 1813-16), che è servito come modello per un quarto di secolo. Il suo nome è uno dei 72 iscritti nella Torre Eiffel.

[4] Henri Étienne Sainte-Claire Deville (1818 – 1881) è stato un chimico francese, allievo di Thénard, è noto per le sue importanti ricerche sull’alluminio.

[5] Il processo prende il nome dal chimico polacco Jan Czochralski (1885-1953) che lo mise a punto nel 1916.

Regolare le nanoparticelle.

12 agosto, 2019 - 09:52

Luigi Campanella, già Presidente SCI

La strada da percorrere per una gestione sicura dei nanomateriali è ancora molto lunga: La commissione europea, tuttavia, grazie al regolamento REACH pone i primi paletti per poter raccogliere quanti più dati scientifici possibili intorno a questa nuova tipologia di sostanze. Le aziende europee sono chiamate, infatti, già dal 1 gennaio 2020, ad attivarsi per poter rispondere a questo nuovo obbligo di legge.

E. Boscaro, L.Barbiero, G. Stocco (Normachem) su Ambiente & Sicurezza sul lavoro n. 3 / 2 0 1 9 (https://www.insic.it/Salute-e-sicurezza/Notizie/Su-AmbienteSicurezza-sul-Lavoro-n3-2019-si-parla-di/196f8ca4-01a9-405b-92cc-c239f0cc48a2) affrontano l’inquadramento legale delle “nanoforme”, analizzano i riferimenti ai nanomateriali all’interno del Testo Unico di Sicurezza e soprattutto le difficoltà, i limiti e le sfide per i valutatori del rischio e per i datori di lavoro, cercando di fornire alcune indicazioni pratiche su come gestire il rischio correlato all’uso di nanomateriali e di conseguenza come definire le misure di gestione del rischio più corrette per tutelare la salute e la sicurezza dei lavoratori.

Negli ultimi decenni, grazie all’enorme progresso scientifico, si sono fatti sempre più largo prodotti contenenti “nanoforme” e “nanotecnologie”. Sul mercato europeo sono già presenti numerosi prodotti conteneti nanomateriali (ad esempio farmaci, batterie, rivestimenti, indumenti antibatterici, cosmetici e prodotti alimentari). La presenza di particelle nanostrutturate conferisce molto spesso al prodotto finito caratteristiche di alta prestazione con risultati a volte “strabilianti”. Però, come spesso succede in questi casi, l’aspetto commerciale ha di gran lunga preceduto la valutazione di quale potrebbe essere l’effetto di queste sostanze sull’uomo e sull’ambiente.Immagini al microscopio elettronico TEM (a, b, e c) di particelle di silice mesoporosa con diametro esterno medio: (a) 20nm, (b) 45nm, e (c) 80nm. Immagine (d) dal microscopio elettronico SEM corrispondente a (b). Gli inserti ad alto ingrandimento sono di una particella di silice mesoporosa da https://it.wikipedia.org/wiki/Nanoparticella

Per capire però di cosa stiamo trattando, bisogna andare a leggere la definizione di nanomateriale.
L’unica definizione legalmente riconosciuta a livello nazionale ed europeo è quella prevista dalla raccomandazione europea la quale recita al punto 2.

Con “nanomateriale” s’intende un materiale naturale, derivato o fabbricato contenente par ticelle allo stato libero, aggregato o agglomerato, e in cui, per almeno il 50% delle particelle nella distribuzione dimensionale numerica, una o più dimensioni esterne siano comprese fra 1 nm e 100 nm.

In deroga al punto 2 i fullereni, i fiocchi di grafene e i nanotubi di carbonio a parete singola con una o più dimensioni esterne inferiori a 1nm dovrebbero essere considerati nanomateriali.
Diversamente dai prodotti chimici a cui il mondo scientifico e produttivo è sempre stato abituato, i nanomateriali hanno rivoluzionato il modo di pensare in quanto le proprietà chimiche che dimostrano, a causa delle loro estreme dimensioni, sono spesso diverse o addirittura diametralmente opposte a quelle previste dai rispettivi materiali “in forma massiva”.https://www.puntosicuro.it/sicurezza-sul-lavoro-C-1/tipologie-di-contenuto-C-6/valutazione-dei-rischi-C-59/nanomateriali-cosa-deve-includere-la-valutazione-dei-rischi-AR-18981/

 

Elementi della tavola periodica: Ferro, Fe. 2. L’uomo d’acciaio.

9 agosto, 2019 - 10:38

Claudio Della Volpe

(la prima parte di questo post è qui)

Il ferro e l’acciaio, due materiali che hanno cambiato la nostra storia, che hanno dato il nome a personaggi della fantasia e della politica: Iron man e l’uomo d’acciaio (Superman) oppure Stalin (in russo Stahl (сталь) vuol dire acciaio) e la frase di Bismarck, “Eisen und Blut”, ferro e sangue, sui destini della Prussia e della Germania*, prodromo della guerra franco-tedesca e della supremazia della Germania in Europa.

Il ferro è anche un protagonista letterario; ricordo qui un romanzo poco conosciuto di uno dei grandi scrittori americani, Jack London; noi tutti lo conosciamo per i romanzi d’avventura del grande Nord, ma (dato che mio padre era un suo estimatore, lo conosco meglio della media) per me Jack London, di idee socialiste fu anche uno scrittore oggi si direbbe di fantascienza, science fiction, descrivendo mondi distopici del futuro in cui lo scontro sociale si sviluppa ai massimi livelli, come in Il tallone di ferro (The Iron Heel) un romanzo sulla lotta sociale portata all’estremo della rivoluzione mondiale.

Ma potrei ricordare La maschera di ferro di Alessandro Dumas, il poema Cold Iron di Rudyard Kipling (l’autore de Il libro della Jungla) o la poesia italiana dal Dante che cuce le palpebre degli invidiosi col filo di ferro (Dante Alighieri canto XIII Purgatorio)

E come a li orbi non approda il sole,
così a l’ombre quivi, ond’io parlo ora,
luce del ciel di sé largir non vole;

ché a tutti un fil di ferro i cigli fóra
e cusce sì, come a sparvier selvaggio
si fa però che queto non dimora.

a Salvatore Quasimodo:

……..
E il vento s’è levato leggero ogni mattina
e il tempo colore di pioggia e di ferro
è passato sulle pietre,
sul nostro chiuso ronzio di maledetti.
Ancora la verità è lontana.
…..

(da Colore di pioggia e ferro, 1949).

Ricordo anche da ragazzo che a Napoli conoscevo “o’ scemo e’ fierro”; non sapete cosa è lo scemo di ferro?

Beh la prima ferrovia italiana fu la Napoli-Portici e negli anni seguenti ci furono molte altre ferrovie nella Campania ottocentesca; la società che costruì molte delle altre ferrovie campane era “Compagnie des Chemins de Fer du Midi de l’Italie”; e dunque nella fertile lingua napoletana, o’ scemo e’ fierro, divenne il nome del treno.

Insomma il ferro è presente fortemente nel nostro immaginario

Come raccontato altrove, si suppone oggi che i primi manufatti in ferro risalgano a 5000 anni fa, 3000 aC, ma si trattava di ferro prevalentemente meteoritico; occorrerà aspettare altri 2000 anni perchè il ferro divenga un bene relativamente comune ed estratto dai suoi minerali.

Abbiamo detto nella prima parte del post che il ferro, a causa della crisi dell’ossigeno di un paio di miliardi di anni fa, si ritrova nella crosta in forma ossidata e dunque la tecnologia di estrazione consiste in una riduzione (si veda la nota in fondo).

La tecnologia della riduzione arrivò in Europa dall’esterno; era diffusa nel 1200aC già in India e nell’Africa sub-sahariana e solo successivamente fu importata nel Mediterraneo dove il bronzo dominava ancora.

Data l’importanza della lega ferro-carbonio diamo un’occhio al diagramma di fase di questa lega:

Da questo grafico vediamo che l’ossido di ferro diventa ferro metallico a temperature molto più basse della fusione che avviene a 1539 °C . Dato che una temperatura così alta è stata a lungo impossibile da raggiungere con i mezzi disponibili il ferro si è ottenuto allo stato solido in forma di spugna porosa, spesso ricca di impurità.

La linea verticale tratteggiata più a sinistra (0.8%) separa il cosiddetto ferro dolce dall’acciaio, che rimane tale fino alla successiva (circa 2%); oltre abbiamo la ghisa con una elevata percentuale di carbonio. Quest’ultimo materiale è fragile e non resisterebbe ai trattamenti che si usavano per purificare il ferro, che consistevano essenzialmente di martellature. L’acciaio mostra proprietà intermedie, è più resiliente e soprattutto si può temprare a caldo, dote ideale per ottenere il bordo affilato, caratteristica primaria di uno strumento da taglio efficace. La tempratura consiste nella brusca riduzione della temperatura che inibendo la diffusione trasferisce a temperature inferiori la struttura caratteristica di quelle superiori.

Il trattamento per martellatura dà il nome al materiale, wrought iron, da una deformazione di “worked” lavorato, in italiano ferro battuto, una massa semifusa di ferro con una bassissima percentuale di carbonio, meno dello 0.1%, ma con una più consistente di impurezze di silice, calcio ed alluminio (fino al 2%) che si rendono visibili meglio al punto di rottura e che vengono espulse tramite azioni meccaniche da forze umane o animali o nei grandi mulini a vento o ad acqua finchè il ferro è ancora caldo (come dice il proverbio: batti il ferro finché è caldo, e dunque può essere purificato, dopo quando la temperatura scende non riesci più ad ottenere il medesimo effetto da cui il senso agisci in tempo finchè puoi). Produrre il ferro era una attività delicata e complessa.

La fornace che parte da minerali di ferro e li mescola con carbone di varia origine viene portata in temperatura mediante l’azione di mantici che soffiano aria, producendo la parziale ossidazione del carbonio ad ossido di carbonio, CO, che è un potente agente riducente gassoso che penetra in una massa compatta contenuta di solito in una materiale resistente alla temperatura, come l’argilla a sua volta almeno parzialmente immersa nel terreno da cui il nome comune di “basso fuoco”..

http://astratto.info/archeometallurgia-e-produzione-metallurgica-nella-storia.html?page=2

https://www.vitantica.net/2017/10/23/siderurgia-antica-i-forni-dell-eta-del-ferro/

Struttura di un “basso fuoco”.

Con l’espressione cast iron invece si indica la lega di Fe-C fra il 2 e il 4% con sempre una certa quantità di silicio; i primi esemplari di questa lega si trovano in Cina nello Jiang-tse e risalgono al 5 secolo aC; erano già allora usati per oggetti che non devono sopportare urti, per esempio nelle costruzioni; di cast-iron cioè di ghisa era fatto il primo ponte europeo in ferro, costruito nel 1770 da Abraham Darby III.

Ironbridge, sul fiume Severn, il più lungo fiume inglese, vicino a Coalbrookdale.

La tecnologia di produzione del ferro e dell’acciaio si è costantemente perfezionata fino allo stadio moderno che risulta notevolmente sofisticato.

Il classico modo di produrre l’acciaio che è il prodotto più interessante dal punto di vista applicativo usa una forno di dimensioni molto grandi, un altoforno, contrapposto al basso fuoco.

Alcuni degli aspetti di questa tecnologia sono stati già ampiamente analizzati in post passati da Fabio Olmi e dal compianto Giorgio Nebbia. In particolare Olmi ha analizzato gli aspetti legati alla tecnologia attuale e Nebbia alla storia dello sviluppo dell’altoforno, perfezionato in parte dal padre di Abraham Darby III, cioè Abraham Darby II. Ma anche da Cowper e poi da Bessemer. Per cui non ripeterò qui quelle storie.

In sintesi l’altoforno estrae il ferro dall’ossido ma al prezzo di introdurvi una notevole quantità di carbonio mentre l’operazione introdotta da Bessemer sulla base delle scoperte di Reamur, che mise a punto il diagramma di fase Fe-C consente di eliminare la quota di C necessaria a trasformare la ghisa in acciaio introducendovi ossigeno gassoso in opportuna quantità. I vari procedimenti che si sono susseguiti nel tempo Bessemer, Thomas, Martin-Siemens sono ormai un ricordo; nel 1948 l’ingegnere svizzero Robert Durrer del tutto fuori dall’ambiente tradizionale del “big steel” introdusse il processo Linz-Donawitz (LD) e ridusse sin dall’inizio i costi degli impianti e tempi di forgiatura, e aumentò considerevolmente la produttività. Sono reazioni che avvengono tutte ad altissima temperatura con notevole rischio per gli addetti.

Questa procedura costituisce il nerbo dell’industria siderurgica mondiale con enormi impianti integrati che collegano altoforni ed acciaierie.

Hanno consentito all’umanità di usare il ferro per le sue costruzioni quotidiane: case, ponti, infrastrutture accumulando una enorme quantità di ferro.

L’evoluzione della produzione dell’acciaio è espressa dal grafico seguente:

Vedete l’incremento eccezionale soprattutto negli ultimi 20 anni, dovuto essenzialmente alla Cina; siamo ormai a 1.8 miliardi di ton nel 2018 di cui la Cina ne ha prodotto poco più del 50%; se consideriamo la produzione procapite si chiarisce ancor più la situazione:

https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf

Scrivono Roland Döhrn and Karoline Krätschell

Our analysis confirms that there seems to be an increase of steel demand in an initial stage of economic development and a decline after economies have reached a certain level of per capita income.

http://www.rwi-essen.de/media/content/pages/publikationen/ruhr-economic-papers/REP_13_415.pdf

In sostanza la maggior parte degli autori collega il reddito e la produzione di acciaio; durante la storia dello sviluppo economico la maggior parte dei paesi sembra correlare il proprio sviluppo economico con il consumo di acciaio usato per molteplici beni durevoli: case, auto, oggetti per la casa, ma anche armi e impianti industriali.

Con la continuazione della crescita lo stock di acciaio si stabilizza e si passa ad altri beni, per esempio aumenta il consumo di alluminio o di rame o di altri elementi, ma l’acciaio e dunque il ferro costituiscono lo stadio basilare dello sviluppo economico.

Questo processo fa cambiare anche il modo di produrre l’acciaio, perché in molti dei paesi “maturi” cresce l’importanza dell’acciaio prodotto per via elettrica, ossia senza passare per la ghisa degli impianti tradizionali ma per il rottame proveniente dal riciclo. Attualmente a livello mondiale circa un 30% dell’acciaio viene da questa fonte. Questa è anche la storia dell’acciaio italiano, dove i grandi impianti storici come Bagnoli o Piombino sono scomparsi lasciando spazio solo a Taranto, mentre l’acciaio elettrico, il tondino del cemento armato ha fatto sviluppare una miriade di piccole e medie imprese soprattutto al Nord, fra Brescia e Bergamo, ricordiamo la Dalmine fra tutte.

Ma c’è ancora un altra cosa da considerare ossia che entrano in gioco altri metodi di produzione diversi da quelli tradizionali, per esempio la cosiddetta riduzione diretta del minerale di ferro, consistente nella sostituzione del carbone come riducente con altri mezzi riducenti

Sono state sviluppate diverse tecnologie di riduzione/fusione diretta in cui il minerale viene ridotto senza fusione con gas riducenti e inviato a un forno di fusione con carbon fossile e ossigeno. Nel forno si sviluppano i gas riducenti che vengono usati per ridurre altro minerale.

Questi metodi oggi riguardano una percentuale ancora piccola del minerale ma la loro importanza è destinata a crescere nel tempo.

Un ultimo aspetto che vorrei citare è quello della corrosione del ferro; la ruggine, come stadio finale della vita del ferro è spesso usata come simbolo della morte, del disfacimento, ma è anche considerata una condizione inevitabile. L’aspetto scientifico è anche molto interessante e merita un post a se; ha stimolato lo sviluppo di materiali come l’acciaio inossidabile, una lega di ferro e cromo che resiste bene alla corrosione in quasi tutti gli ambienti.

Eppure esiste la prova storica e inamovibile che il ferro prodotto in modo opportuno resiste bene alla corrosione. Si tratta della cosidetta colonna di ferro, un monumento indiano del V sec dC a Dehli.

La colonna di ferro di Dehli, 400 dC. mostra una ottima resistenza alla corrosione dovuta allo strato superficiale di fosfato di ferro idrato.

Pesante circa 6 ton si pensa sia stata prodotta in India ad Udayagiri e poi riusata a Dehli dai re Gupta. Essa ha attratto l’attenzione degli archeologi e degli scienziati per la sua elevata resistenza alla corrosione che si pensa venga dalla costituzione superficiale , un fosfato di ferro idrato formatosi su un minerale ad elevata percentuale di fosforo.

Questa colona è l’antenata di un più moderno materiale che è entrato nella industria delle costruzioni col nome di acciaio patinabile (weathering steel), o più comunemente COR-TEN.

Il COR-TEN (da corrosion resistant e tensile stength, dunque forte e resistente) è oggi usato nella costruzione di ponti e altri manufatti durevoli e deve la sua resistenza alla corrosione ad una struttura analoga a quella della colonna di Dehli. Si autoprotegge dalla corrosione tramite una patina degli ossidi dei suoi elementi di lega. Tale strato si forma in un tempo relativamente lungo di mesi per

  • esposizione all’atmosfera;
  • alternanza di cicli di bagnamento-asciugamento;
  • assenza di ristagni e/o contatti permanenti con acqua.

Si tratta di un materiale molto interessante anche se al momento non può essere usato nel cemento armato.

Il ferro ha un grande passato ma anche un notevole futuro e la sua abbondanza lo rende un elemento chiave nella nostra strategia tecnologica per un futuro sostenibile.

Ponte Amedeo IX il beato a Torino. Fotografia di Fabrizio Diciotti, 2012  IL nuovo ponte strallato sulla Dora ha una luce di 43 metri ed è costituito di acciaio COR-TEN

Nota dell’autore.

Dal punto di vista chimico la metallurgia umana è la fortunata applicazione dei criteri e dati esprimibili dalla tabella qua sotto:

https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/22Metals/22.04%3A_Reduction_of_Metals

L’ossidazione del carbonio (anche se comunemente in forma di monossido) fornisce l’energia libera per la riduzione degli ossidi metallici; come si vede dalla tabella a t ambiente sarebbe possibile solo per argento e mercurio; ma dato che al crescere della temperatura l’energia libera di riduzione del metallo diminuisce (essenzialmente perché l’entropia connessa con la formazione dell’ossigeno aumenta!!! e ricordiamo ΔG=ΔH-TΔS) anche il ferro e lo stagno diventano accessibili; invece l’alluminio o il magnesio non possono essere ridotti in questo modo e dunque si ricorre a reazioni elettrochimiche in cui l’energia elettrica fornita aiuta a superare il gap termodinamico.

*«La posizione della Prussia in Germania non sarà determinata dal suo liberalismo ma dalla sua potenza […] La Prussia deve concentrare la sua forza e tenerla per il momento favorevole, che è già venuto e andato diverse volte. Sin dai trattati di Vienna, le nostre frontiere sono state mal designate a favore di un corpo politico sano. Non con discorsi, né con le delibere della maggioranza si risolvono i grandi problemi della nostra epoca – questo fu il grande errore del 1848 e del 1849 – ma col ferro e col sangue (Eisen und Blut).» (Otto von Bismarck nel settembre 1862 per far approvare le spese militari del nuovo regno)

Giorno di ferie

7 agosto, 2019 - 09:57

Mauro Icardi

Oggi sono in ferie. Un giorno solo, ma la mia destinazione per trascorrere la giornata è particolare. Me ne vado in biblioteca. Sono sempre stato un topo di biblioteca. Proprio ieri, io Dario ed Emanuele eravamo a fare il nostro solito briefing alla trattoria Campigli. Sono ormai passati quasi sei mesi, da quando abbiamo cominciato a lavorare su un progetto. Forse troppo ambizioso, ma insomma ci crediamo. Ci siamo messi in testa di lavorare sugli inquinanti emergenti. E magari di trovare il modo per eliminarli. O per meglio dire per cercare di ridurne gli effetti nocivi. Dario ed Emanuele sono due amici. In gamba. Sono anni che mi chiamano, per avere consigli e informazioni. Mi chiamano il Professore. Il Professore della depurazione. E la cosa mi fa invariabilmente sorridere. Abbiamo discusso davanti ad un piatto di pasta al pomodoro, e ad un bicchiere di bianco, su quali saranno le nostre prossime mosse. Utilizzare un sistema di ossidazione avanzata. Se l’ossigeno liquido ad alte pressioni, seguito dalla cavitazione idrodinamica non ci darà i risultati sperati, passeremo all’ozono, magari in combinazione col perossido di idrogeno. Insomma l’acqua ossigenata. Loro sono Ingegneri. Io il loro chimico di riferimento. In fondo l’esame di stato per l’iscrizione all’ordine l’ho dato anche per questo. Per fare il consulente. Per approfondire. Per placare le mie inesauste curiosità. Loro qualche anno fa si sono trovati in una situazione critica. Lo studio di Ingegneria che li aveva assunti viveva delle iniziative del titolare e fondatore. Alla sua morte, il figlio li aveva rassicurati: “Niente paura, l’attività la mandiamo avanti, con il vostro aiuto”. Due mesi dopo invece lo stop. Brusco e inaspettato. E nemmeno per una ragione di crisi, finanziaria o di ordinativi. Gli impianti di trattamento di reflui rognosi, come quelli zootecnici o tessili erano disseminati non solo in Italia, ma in buona parte del mondo. Anche nella rampante ed emergente Cina. Ma il figlio e gli altri fratelli avevano semplicemente deciso di dedicarsi al marketing pubblicitario. Emanuele dopo qualche insistenza, ma con molta caparbietà era riuscito a convincere Dario. Lo studio alla fine lo avevano rilevato loro. E piano piano avevano rassicurato i vecchi clienti, che avevano necessità di essere seguiti nella manutenzione e nell’addestramento per la gestione degli impianti installati. Ma non si erano fermati, e ne avevano costruiti e progettati di nuovi. Ormai sono una decina di anni che collaboro con loro. Sono in gamba e se lo meritano.

Io però devo chiarirmi le idee su come eventualmente procedere. Servirebbe un protocollo per le prove sull’impianto pilota, e uno per le analisi da fare. E per questa seconda attività ci serve un laboratorio molto attrezzato. Ed è per questo che voglio andare in biblioteca. A Varese nella sala studio ci sono almeno tre monumentali enciclopedie di chimica industriale. Non sono oggetti di modernariato, come qualcuno potrebbe pensare. Sono invece un tesoro di informazioni preziose. E io ancora provo quella inebriante sensazione che attiene al sentimento, più che alla razionalità, del piacere di sfogliare le pagine di un libro. Di prendere appunti (non sottolineare, ovvio i libri della biblioteca vanno rispettati), e di immergermi nello studio.

Le previsioni meteo mi hanno avvisato. Farà caldo. L’ennesima ondata di caldo africano. Il nuovo che avanza a livello climatico. Oggi non posso usare la bici, seppure a malincuore. Userò il treno che mi è sempre stato amico. Una passione per i mezzi che viaggiano su rotaia che risale all’infanzia. E molti mi prendono benevolmente in giro, citando una battuta di Renato Pozzetto: “Eh, il treno è sempre il treno”. Ma non è un gran tragitto. Sono pochi chilometri, ed in soli sette minuti arrivo a Varese. E l’auto resta a casa. Chi mi conosce bene lo sa. Io cerco di fare la mia parte, come il colibrì della favola che cercava di spegnere l’incendio della foresta con una goccia d’acqua che portava nel becco, mentre tutti gli animali fuggivano dalle fiamme.

Sono davanti all’ingresso della biblioteca in anticipo di quindici minuti. Controllo le mail sullo smartphone. Ho resistito per anni. Non volevo comprarne uno, ero irremovibile. Mi venivano sempre in mente i bambini del Congo infilati in piccoli e terrificanti pozzi, a scavare per estrarre il Coltan. Per permetterci di buttare via il modello funzionante e utilizzabile, ma ormai fuori moda. Ho ceduto le armi perché la banca mi ha volontariamente obbligato a procurarmene uno. Altrimenti mi sarei scordato l’internet banking. Ho borbottato parecchio, ma ho placato i sensi di colpa. Lo smartphone era quello di Alessia, la mia bambina. Vent’anni compiuti da pochissimi, ma è sempre la mia bambina. Lo smartphone è stato riutilizzato. Magari in futuro lo riciclerò. Piccola economia circolare domestica.

Mi sento chiamare: “Signore, scusi signore”. Alzo la testa. Di fronte ho un uomo di mezza età. Nemmeno troppo male in arnese. “Mi offrirebbe un caffè?”. Sono sorpreso, penso di alzarmi e accompagnarlo al bar più vicino, ma cambio idea. Estraggo due euro dal portamonete. Lui li prende, mi ringrazia, e se ne va borbottando. Mi dice che qualcuno glieli ha rifiutati con scortesia. Si chiede perché, forse perché sono persone cattive. Ci penso anche io, forse è vero. Ma non trovo una risposta. Nel frattempo la biblioteca ha aperto le porte. Mi infilo e salgo in sala consultazione.

Non c’è molta gente. Mi siedo in un tavolo d’angolo. L’enciclopedia di chimica industriale, mi assorbe per un paio d’ore. Mi immergo nello studio e mi si crea intorno come una bolla. Non c’è il solito rumore, il solito caos dell’emeroteca, dove alcuni arzilli pensionati ignorano i cartelli che invitano a non disturbare. Discutono di tasse, di calcio, di donne. Come fossero al bar. Sono un gruppo di quattro o cinque frequentatori abituali. Non mi sono mai permesso di dirgli di abbassare il tono di voce. Né io, né gli addetti della biblioteca. Ma in sala consultazione trascorro due ore di pace. Riesco a studiare con profitto. Oggi leggere è complicato. Non si riesce più a farlo in santa pace per esempio nei viaggi in treno. La babele cacofonica delle telefonate insulse lo rende impossibile. Leggere in treno è ormai un’attività piacevole, ma di fatto ormai impossibile. I lettori sono pochi, dispersi nella massa dei messaggiatori compulsivi, e dei chiacchieroni instancabili. Ma qui una strategia per le prossime prove l’ho trovata. Partiremo con l’ossigeno ad alta pressione. Poi con l’ozono, modificando l’impianto pilota e magari recuperando un generatore che lo produca. Si, direi che sono soddisfatto. Anche di aver ripreso in mano i libri che avevo consumato mentre preparavo l’esame per iscrivermi all’Ordine. E la memoria mi porta anche più indietro. Fino a farmi ricordare che ho perso, e che vorrei ritrovare i normografi che usavo per il disegno di impianti chimici. Indimenticabili. Le mitiche mascherine Unichim. Altro che CAD-CAM. Il fascino di disegnare impianti col normografo in pochi lo conoscono. Normografi con i simboli di pompe, serbatoi e valvole. Mi viene quasi la malinconia…

Mi accingo ad uscire, ma varcata la porta il caldo esterno mi mozza quasi il fiato. Siamo a Varese, a pochi metri ci sono i giardini estensi. Ma se chiudessi gli occhi potrei pensare di essere in Africa.

Ho deciso di mangiare nel solito self service, dove vado in pausa pranzo quando lavoro. Ci arrivo in autobus. Il parcheggio è pieno di auto ed è assolato. Ci sono pochi alberi che da anni crescono molto stentatamente. Entro nell’atrio del centro commerciale, mentre ne sta uscendo, piuttosto trafelato un signore che spinge un condizionatore portatile. La temperatura sta salendo verso i 35° C. Cerca di uguagliare il record di 37 della fine di Giugno. Andando verso la fermata dell’autobus ho capito anche perfettamente, sulla mia pelle, cosa sia l’isola di calore urbana. Lo scopro anche quando pedalo, e i camion mi regalano il caldo degli scappamenti mentre pedalo, e cerco anche di non farmi investire.

Ritorno verso il centro della città. Ho una sete tremenda. Vengo avvicinato da un altro questuante, anche lui simile a quello precedente. Non me la sento di fare distinzione. E due euro ci sono anche per lui. Arrivo alla mia fontanella, quella dei giardini estensi. Bevo, mi bagno i polsi e i capelli. Che meraviglia! Mi siedo su una panchina vicina e lascio andare i pensieri. Osservo le persone intorno a me con la mentalità del chimico. Mi chiedo che cosa potrebbe succedere se cominciassi a rivolgere la parola a qualcuno di loro. Sono persone le più diverse. Mamme o nonni con i bambini. Impiegati, netturbini che lavorano sotto un caldo che toglie il fiato. Le mamme che si lamentano del caldo. Chissà se cominciassi a parlar loro di CO2, magari a raccontare che già Svanthe Arrhenius aveva capito che bruciando i combustibili fossili ci saremmo trovati nei guai. Se provassi ad accennare all’impossibilità di sfuggire alle leggi fisiche. Probabilmente mi troverei in difficoltà. Forse isolato. Destino di chi cerca di guardare la realtà con gli strumenti della sua professione e della sua formazione. Non solo quelli di laboratorio, ma anche quelli della filosofia della professione. Probabilmente sarei isolato due volte. Sono un chimico, quello a cui i colleghi chiedono di mettersi a produrre la metanfetamina.

Quello a cui continuano a chiedere quando bisogna buttare il sale nella pasta. E nonostante continui a ripetere che si deve buttare dopo, e non prima dell’ebollizione, quando si fa una spaghettata tra amici continuano imperterriti a fare il contrario. Se mi mettessi a far lezione per strada, quasi un filosofo nell’agorà forse rischierei non dico il linciaggio, ma forse un certo ostracismo. Alla fontanella sono stato l’unico a bere. Intorno a me vedo bottigliette di ogni tipo di liquido. Gassose, tè, energy drynk, qualche birra e molte bottigliette di acqua che ha fatto molta strada per arrivare fin qui, a Varese. Ha viaggiato in autostrada. Potrei spiegare che si impiega dell’energia per trasportare l’acqua, e che qui la fontanella è disponibile per placare la sete. Potrei tentare di far capire che è un controsenso bruciare petrolio per bere l’acqua di montagna imbottigliata nel PET. Che c’è dell’energia dispersa che va in entropia e caos, e del petrolio bruciato che produce la CO2 che contribuisce alla nostra sofferenza odierna. Sospiro e rinuncio. Mi alzo dalla panchina per dirigermi in stazione. Sentendomi un poco escluso. Una cassandra come mi sono definito. Vado a casa bisogna che metta giù una procedura per le nostre prove. Poi ne parlerò con Dario ed Emanuele. Per il resto so che fare il colibrì è faticoso. Ma sono nato tondo, e non morirò quadrato. Domani torno al lavoro, e la bici mi sta aspettando.

Origine dell’oro

5 agosto, 2019 - 10:45

Diego Tesauro

L’oro ha avuto origine come tutti gli elementi pesanti della tavola periodica, in particolare quelli della terza serie di transizione, da processi di accrescimento dei nuclei atomici più leggeri con acquisizioni di neutroni secondo due modalità: una rapida, processo r, (https://it.wikipedia.org/wiki/Processo_r), l’altra lenta processo s ((https://it.wikipedia.org/wiki/Processo_s).

I due processi si verificano entrambi nelle fasi finali dell’evoluzione stellare. In particolare il processo r avviene in pochi secondi nelle esplosioni di supernove di stelle massicce (superiori alle 8 masse solari). Oggi si ritiene però che gli elementi pesanti si ottengono soprattutto nella fusione di sistemi binari di stelle di neutroni, cioè di stelle dalle dimensioni ridotte con diametro di circa 20 chilometri, ma con una massa compresa tra 1.4 e 3.0 masse solari, quindi estremamente dense, di densità uguale a quella del nucleo dell’atomo. Un fenomeno del genere è stato osservato di recente con gli esperimenti Virgo e Ligo che hanno consentito per la prima volta di rilevare le onde gravitazionali [1]. Il processo S si verifica invece nelle stelle giganti rosse AGB ed è appunto più lento avendo una durata di migliaia di anni. Questo processo produce gli elementi più pesanti dell’ittrio fino al piombo in stelle giganti a bassa contenuto di elementi diversi da idrogeno ed elio e di piccola mass

In entrambi i casi, lo spazio e le nebulose, da cui si generano le stelle, risulteranno contaminate da elementi pesanti, tra i quali l’oro, che quindi entrano nella formazione dei nuovi sistemi planetari. Così è avvenuto anche per il nostro sistema solare. L’oro, come anche il platino e gli altri elementi di transizione della terza serie, pertanto è presente, come in tutti i pianeti, nel nucleo della Terra. In effetti, nel nucleo ci sono metalli preziosi in quantità sufficiente da coprire l’intera superficie della Terra con uno strato spesso quattro metri. Tuttavia, l’oro è presente nel mantello e nella crosta. Nel mantello è decine o migliaia di volte più abbondante del previsto. Ed anche la presenza sulla crosta terrestre è più alta di quella proposta dai modelli. L’oro infatti pur essendo un elemento raro, lo dovrebbe essere ancora di più rispetto a quei 1.3 g per 1000 tonnellate di materiale della crosta. Questa anomalia venne spiegata a favore di una provenienza meteorica dovuta all’intenso bombardamento che ha subito la Terra oltre 200 milioni di anni dopo la sua formazione. Questa teoria era stata avvalorata dalle missioni Apollo sulla Luna. Infatti la presenza dell’oro in maggior misura nella crosta del satellite, rispetto al mantello, avvaloravano l’ipotesi relativa ad una provenienza esterna. Una conferma di questa teoria è venuta nel 2011 [2]. L’ analisi di rocce, presenti in Groenlandia molto antiche e risalenti ad un’epoca precedente il bombardamento meteorico, ha rilevato una composizione diversa rispetto a quella delle rocce moderne relativamente agli isotopi del tungsteno altro elemento molto raro e della medesima origine dell’oro. In particolare è stata rilevata una diminuzione di 15 parti per milione nella abbondanza relativa dell’isotopo 182W rispetto alle rocce moderne. Questo dato è una conferma che la superficie terrestre è stata arricchita di elementi pesanti solo successivamente alla sua formazione.

[1] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Phys. Rev. Lett. 2017 119, 161101

[2] Matthias Willbold, Tim Elliott & Stephen Moorbath The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment Nature 2011 477, 195–198 .

Elementi della tavola periodica, Oro, Au. (2a parte)

2 agosto, 2019 - 14:20

Rinaldo Cervellati

“All’idea di quel metallo portentoso onnipossente

un vulcano la mia mente incomincia a diventar…”

(da: Il barbiere di Siviglia, di Gioacchino Rossini)

la prima parte di questo post è qui.

Uso in gioielleria

Poiché l’oro puro è troppo tenero, in gioielleria è utilizzato in lega con altri metalli, principalmente rame, argento, palladio e nickel. I gioielli più comuni sono generalmente costituiti da oro, argento e rame. Le carature più frequenti sono 22 k e 18 k. La quantità di rame determina il colore della lega. L’oro giallo a 18 k contiene dal 12-7% di argento e dal 13-18% di rame. L’oro rosso alla stessa finezza contiene il 4,5% d’argento e il 20,5% di rame. L’oro bianco, sempre a 12k, è composto al 75% da oro, e al 25% da nickel, argento e palladio[1]. Il nickel è allergenico e il suo contenuto nell’oro bianco è regolato dalla legislazione europea. Le leghe di oro-argento-palladio sono ovviamente più costose di quelle che usano il nickel.

Gioielleria in oro

Una particolare lega d’oro è utilizzata per unire i componenti di gioielli d’oro con saldature ad alta temperatura. Per un lavoro di qualità, la lega d’oro da saldatura deve corrispondere alla finezza del lavoro, sono quindi prodotte leghe adatte ad abbinare i colori dei gioielli da unire. La lega per saldatura aurea è solitamente prodotta in almeno tre intervalli di punto di fusione.

L’oro può anche essere ridotto in fili sottili, usati nel ricamo per impreziosire stoffe e capi di abbigliamento.

Uso in elettronica

L’impiego attualmente più importante per l’oro è la fabbricazione di connettori elettrici non corrodibili nei computer e in altri dispositivi elettronici. Secondo il World Gold Council[2], un tipico cellulare può contenere 50 mg di oro, del valore di circa 50 centesimi. Ma dal momento che ogni anno viene prodotto circa un miliardo di telefoni cellulari, si arriva a un valore in oro di circa 500 milioni di dollari solo da questa applicazione.

Scheda elettronica con piste dorate

Sebbene l’oro sia attaccato dal cloro libero, la sua buona conduttività e la generale resistenza all’ossidazione e alla corrosione in altri ambienti (compresa la resistenza agli acidi) ha portato al suo uso industriale diffuso nell’era elettronica come uno strato sottile per il rivestimento di connettori elettrici ed elettronici, che assicurano così una sicura e resistente connessione ad es. dei cavi audio, video e USB. È stato discusso il vantaggio dell’utilizzo dell’oro in queste applicazioni rispetto a altri metalli connettori come lo stagno; i connettori d’oro sono spesso criticati dagli esperti di audiovisivi come troppo costosi per le apparecchiature di largo consumo. Tuttavia, l’uso dell’oro in contatti elettronici di apparecchiature più delicate e molto costose che operano in atmosfere molto umide o corrosive (ad es. particolari computer, strumenti per comunicazioni, motori di aerei a reazione, veicoli spaziali) è ampiamente giustificato.

L’oro viene anche utilizzato nei contatti elettrici grazie alla sua resistenza alla corrosione, alla conduttività elettrica, alla duttilità e alla mancanza di tossicità. I contatti degli interruttori sono generalmente soggetti a uno stress da corrosione più intenso rispetto ai contatti a scorrimento.

Si stima che il 16% dell’oro mondiale sia contenuto nella tecnologia elettronica del Giappone.

Uso in medicina

L’oro e le sue leghe metalliche sono state a lungo utilizzate a scopo medicinale. L’oro, solitamente metallo, è forse la medicina più anticamente somministrata e nota a Dioscoride[3]. Nel Medioevo, l’oro era spesso considerato benefico per la salute, nella convinzione che qualcosa di così raro e bello non potesse essere altro che salutare.

Nel diciannovesimo secolo l’oro aveva la reputazione di essere “nervino”, poteva costituire cioè una terapia per i disturbi nervosi. Veniva usato come trattamento per depressione, epilessia, emicrania, problemi ghiandolari e alcolismo. L’apparente paradosso con la sua tossicità[4] è stato causa di gravi incomprensioni sulla possibile azione dell’oro in fisiologia. Solo i sali e i radioisotopi dell’oro esercitano una qualche azione farmacologica, poiché l’oro metallico elementare è inerte per tutte le sostanze chimiche che incontra all’interno del corpo. Alcuni sali d’oro hanno proprietà anti-infiammatorie e attualmente due di essi (aurotiomalato di sodio e auranofina) sono ancora usati come farmaci nel trattamento dell’artrite e di altre condizioni simili negli Stati Uniti .

Le leghe d’oro sono utilizzate nell’odontoiatria restaurativa, specialmente nei restauri dei denti, come corone e ponti permanenti. La malleabilità delle leghe d’oro facilita la formazione di una superficie di accoppiamento dei molari superiori con altri denti e fornisce corone più soddisfacenti di quelle in porcellana. Le preparazioni di oro colloidale (sospensioni di nanoparticelle d’oro) in acqua sono intensamente colorate di rosso e possono essere ottenute con particelle strettamente controllate fino a poche decine di nanometri attraverso la riduzione del cloruro d’oro con ioni citrato o ascorbato. Oltre le applicazioni odontoiatriche, l’oro colloidale è utilizzato in ricerche in medicina, biologia e scienza dei materiali. Ad esempio, particelle d’oro colloidale rivestite con anticorpi specifici possono essere utilizzate come sonde per la presenza e la posizione di antigeni sulle superfici cellulari.

L’oro, o leghe di oro e palladio, sono usate per la preparazione di campioni biologici utilizzati nella microscopia a scansione elettronica.

L’isotopo oro-198 è usato in medicina nucleare, in alcuni trattamenti contro il cancro e per curare patologie affini.

Nel 2001 l’oro metallico fu indicato “Allergene dell’anno” dall’American Contact Dermatitis Society, in seguito a riscontrati casi di allergie da contatto Nonostante questo, l’oro è un allergene da contatto poco potente, rispetto per esempio al nickel.

Altri usi dell’oro e dei suoi composti.

Opportunamente trattati oro e derivati sono impiegati come catalizzatori nell’industria e nei laboratori di ricerca. L’acido cloroaurico è utilizzato in fotografia per modificare le immagini prodotte dai sali d’argento, in astronautica nei visori delle tute spaziali per la protezione dalla luce solare assicurando la schermatura necessaria non solo alla luce visibile e ultravioletta ma anche all’infrarosso.

Riciclaggio [1]

Il sondaggio 2014 dell’agenzia Thomson Reuters per il GFMS (Gold Fields Mineral Service) ha stimato che alla fine del 2013 il quantitativo di oro “fuori terra” ammontava a 176.000 tonnellate. Questo stock comprende gioielli, partecipazioni statali, investimenti privati e fabbricazione industriale. Una piccola quantità si è usurata nel tempo e quindi non è stata considerata. Poiché l’oro non si appanna o decompone, tutto questo quantitativo è in teoria disponibile per il riciclaggio. In realtà, nel 2009 il riciclaggio dell’oro ammontava a solo l’1 % dell’intero stock. La maggior parte potrebbe non tornare mai sul mercato, per i seguenti motivi: per molte persone, i gioielli hanno un valore sentimentale ed evoca forti emozioni, quindi non vogliono separarsene; il rapporto di molti individui con l’oro è di natura religiosa o mistica quindi da considerare sacro; molti investitori considerano l’oro come un bene rifugio, da trasmettere attraverso le famiglie piuttosto che venderlo; le banche centrali reputano l’oro un’importante risorsa di riserva e le attuali tendenze suggeriscono che è più probabile che comprino piuttosto che vendere oro; molte persone non sono ancora consapevoli del valore dell’oro nei loro dispositivi elettronici (telefonini, personal computer, ecc.), è pertanto presumibile che gran parte dell’oro nell’elettronica degli anni ’80 e ’90 sia finito in discarica.

Tuttavia, grazie alle sue proprietà uniche, l’oro si presta bene al riciclaggio, tanto che l’oro riciclato ha rappresentato, in media, dal 1995 al 2014, circa un terzo delle scorte totali.

L’industria del riciclaggio dell’oro comprende due fonti:

(i) oro riciclato ad alto valore che ne rappresenta circa il 90%. Sebbene questo segmento sia principalmente costituito da gioielli, talvolta sono riciclati anche lingotti d’oro e monete;

(ii) oro riciclato da scarti industriale che costituisce il restante 10 %[5]. È costituito principalmente da oro trovato nei rifiuti di apparecchiature elettriche ed elettroniche (RAEE).

Le due fonti di oro da riciclo

Le tecniche di riciclaggio sono ovviamente diverse per le due fonti. I materiali ad alto valore per il riciclaggio contengono una percentuale significativa di oro legato con uno o più metalli. Separare questi metalli l’uno dall’altro è relativamente semplice e i processi disponibili per i raffinatori sono tutte procedure di separazione chimica e fisica ben consolidate. Alcuni raffinatori separano i metalli semplicemente riscaldando e fondendo una lega. I gioiellieri possono farlo da soli su piccola scala perché sono richieste attrezzature o conoscenze specialistiche ridotte.

Tuttavia, tali semplici procedure non sono adeguate per la raffinazione ai più alti livelli di purezza spesso richiesti dall’industria. Per raggiungere questa purezza, sono state sviluppate procedure più complesse come quelle già riportate nel paragrafo riguardante la raffinazione, ad es. il processo Wohlwill, che consente la rimozione di tutti i metalli residui del gruppo del platino e quindi di oro riciclato estremamente puro.

Il recupero del metallo dai RAEE è notevolmente più complicato rispetto a quello delle fonti di alto valore. L’oro è usato nell’industria elettronica principalmente nella forma di fili sottili e come metallo di placcatura. Ma i RAEE possono contenere fino a 60 materiali diversi e numerosi prodotti chimici complessi e spesso pericolosi. La plastica e l’acciaio tendono a dominare in peso, ma l’oro e altri metalli preziosi dominano in valore. Ad esempio, nel 2010, oro, palladio e argento costituivano circa il 93% del valore di un telefono cellulare fuori uso. L’estrazione di metalli preziosi da questi materiali in modo sicuro ed efficiente è difficile. Ma se gestiti in modo efficace, il materiale RAEE può dare un contributo positivo a una “economia circolare” in cui i prodotti e le risorse di valore vengono riutilizzati e riciclati.

Alcune aziende hanno sviluppato operazioni di recupero all’avanguardia per superare la sfida di estrarre oro e altri metalli dai RAEE. Ad esempio, lo stabilimento di Umicore a Hoboken, in Belgio, recupera 17 metalli ad alto rendimento da una vasta gamma di rifiuti, come convertitori catalitici usati e catalizzatori chimici, materiali industriali e vari altri rifiuti di produzione. La struttura utilizza un processo di eco-efficienza in cui quasi nessuna produzione va sprecata. Anche le scorie sono utilizzate come aggregato e l’acido solforico (un sottoprodotto di lavorazione) è recuperato e riutilizzato.

Tuttavia, non tutte le operazioni di riciclaggio sono eseguite con standard così elevati. L’attrazione della miniera urbana, combinata con i prezzi elevati dei metalli preziosi, ha incrementato la crescita del recupero non regolamentato dei metalli dai RAEE. La lisciviazione chimica che coinvolge cianuro e acqua regia è talvolta utilizzata senza adeguate protezioni per la salute, in particolare nei paesi in via di sviluppo.

Numerose agenzie e aziende hanno lavorato per risolvere questo problema stabilendo opportune partnership. Grazie a ciò, numerosi paesi africani praticano attualmente un riciclo sostenibile. A tutt’oggi, queste operazioni hanno collettivamente trattato oltre 1.000 tonnellate di RAEE, inviando più di 25 tonnellate di circuiti stampati in siti di riciclaggio di alto livello.[1]

Ciclo biogeochimico dell’oro

L’indagine sui processi che contribuiscono al ciclo biogeochimico dell’oro in condizioni ambientali vicine alla superficie terrestre (regolite[6]) è stata intrapresa da Frank Reith, School of Earth and Environmental Sciences, University of Adelaide (Australia) e dai suoi collaboratori [2,3].

Prof. Frank Reith

In breve il ciclo biogeochimico dell’oro, ovvero la sua solubilizzazione, trasporto e precipitazione, che porta alla trasformazione finale in granuli e pepite è mediata da colonie di microorganismi protoobatteri e attinobatteri, in particolare Cupriavidus metallidurans e Delftia acidovorans.

In figura sono schematizzati questi processi:

Figura. Ciclo biogeochimico dell’oro (schema): oro submicroscopico nella regolite, solubilizzazione via microbica e trasporto, bioaccumulazione e biomineralizzazione, formazione secondaria visibile dei granuli.

Questo ciclo è stato verificato in ambienti temperati, subtropicali, semi-aridi, subartici e molto recentemente anche in un ambiente artico, come quello della Finlandia [4].

Gli studi sul ciclo biogeochimico hanno ispirato ricerche sulla possibilità di un bioriciclaggio del metallo. Ad esempio un gruppo di ricercatori di Heidelberg ha pubblicato sul web un articolo secondo il quale la delfibactina, un peptide non ribosomiale prodotto dal batterio Delftia acidovorans, sarebbe in grado di far precipitare l’oro da soluzioni acide permettendone un recupero efficiente dai rifiuti elettronici [5].

 

Opere consultate

CRC, Handbook of Chemistry and Physics, 85th, p. 4-13-14

https://en.wikipedia.org/wiki/Gold

https://it.wikipedia.org/wiki/Oro

Bibliografia

[1] A. Hewitt, T. Keel, M. Tauber, T. Le-Fiedler, The Ups and Downs of Gold Recycling.

https://www.bcg.com/publications/2015/metals-mining-cost-efficiency-ups-and-downs-of-gold-recycling.aspx

[2] F. Reith et al., Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions., Minerals, 2013, 3, 367-394.

[3] M.A. Rea, C.M. Rammit, F. Reith, Bacterial biofilms on gold grains—implications for geomicrobial transformations of gold., FEMS Microbiology Ecology, 2016, 92, 1-12.

[4] F. Reith et al., Biogeochemical cycling of gold: Transforming gold particles from arctic Finland., Chemical Geology, 2018, 483, 511-529.

[5] AA.VV. Gold Recycling. Using Delftibactin to Recycle Gold from Electronic Waste.

http://2013.igem.org/wiki/index.php?title=Team:Heidelberg/Project/Delftibactin&oldid=361555

 

[1] Il palladio è l’elemento chimico numero 46 della Tavola periodica e il suo simbolo è Pd. È un metallo raro, di aspetto bianco-argenteo, del gruppo del platino cui somiglia anche chimicamente.

[2] Il World Gold Council, creato nel 1987, è un’associazione industriale delle principali aziende minerarie aurifere. Il suo scopo è quello di stimolare la domanda di oro da parte dell’industria, dei consumatori e degli investitori.

[3] Pedanius Dioscorides (40-90 d.C. ca.) è stato un medico, farmacologo, botanico greco. Autore del De Materia Medica, enciclopedia in cinque volumi sulla medicina erboristica e sulle relative sostanze medicinali, ampiamente utilizzata per oltre 1.500 anni. Fu medico nell’esercito romano.

[4] L’oro metallico puro non è tossico e non è irritante se ingerito e talvolta viene usato come decorazione alimentare sotto forma di sottilissimi fogli d’oro. L’oro metallico è approvato come additivo alimentare dall’EFSA (European Food Safety Administration). Sebbene i sali di oro (es. cloruri di oro) siano tossici, l’accettazione dell’oro metallico come additivo alimentare è dovuta alla sua inerzia chimica e alla resistenza ad essere corroso o trasformato in sali solubili da qualsiasi processo chimico noto che nell’organismo umano.

[5] Risultato notevole se confrontato con il circa 5% di dieci anni fa (2004).

[6] La regolite è uno strato di materiale di granulometria eterogenea che ricopre uno strato di roccia compatta usualmente chiamata roccia madre. Sulla Terra è quella parte di litosfera più direttamente compenetrata con atmosfera, idrosfera e con la vita vegetale e animale.

Il poliedrico Primo Levi

31 luglio, 2019 - 14:29

Mauro Icardi

Renato Portesi, collaboratore di Primo Levi nella fabbrica di vernici Siva di Settimo Torinese, nel saggio di chiusura del volume “Cucire parole, cucire molecole”, edito dall’Accademia delle Scienze di Torino, ricorda Levi con queste parole. “Era un chimico che amava dello stesso amore la scienza pura, la ricerca sofisticata e le operazioni manuali, che non faceva differenza di rango tra l’attività del ricercatore e quella del tecnico.   Il suo contributo alla crescita dell’azienda è stato decisivo: per le conoscenze scientifiche e tecniche che ha messo a disposizione, per il rigore logico con il quale insegnava ad affrontare i problemi e per aver contribuito a formare collaboratori eclettici, capaci di passare da una disciplina all’altra con notevole facilità”.

Questo ritratto di Primo Levi nella veste di chimico, e in seguito di direttore tecnico di un’azienda di produzione di vernici, mi ha molto colpito. Perché in primo luogo conferma il valore dell’uomo e del tecnico. E anche il suo eclettismo entusiastico e contagioso. Levi non amava essere definito scienziato, preferendo la definizione di tecnico. A mio parere, leggendo non solo le sue opere, ma anche le biografie e i saggi scritti da moltissimi altri autori (Belpoliti e Jesurum tra i tanti), ne viene fuori invece la figura di uno scienziato umanista. Dedito alla gestione della quotidianità aziendale, ma capace di idee innovative e originali. E non ultima dote quella di essere un uomo capace di trasmettere il suo entusiasmo ai collaboratori. Strano che Levi non amasse essere definito scienziato. Il suo saggio intitolato “L’asimmetria e la vita” usato poi per dare il titolo ad un volume uscito postumo nel 2002, è un esempio perfetto della sua indubbia capacità di divulgazione scientifica. E non si può dimenticare che la prestigiosa Royal Institution inglese ha sanzionato nel 2006 la vittoria de “Il sistema periodico” come miglior libro di divulgazione scientifica di tutti i tempi. Giova ricordare tra i libri concorrenti vi erano tra gli altri “L’anello di Re Salomone” di Konrad Lorenz, e “Il gene egoista” di Richard Dawkins.

Ma l’autore torinese rimane un esempio di poliedricità. Perché in lui si possono riscontrare diverse anime, che vanno anche oltre a quella duplice del centauro, come amava definirsi. Non solo la dualità chimico-scrittore. C’è un Levi razionalista. Il Levi che definisce il suo stile di scrittore redigendo i rapporti tecnici di fabbrica, oppure descrivendo con lucida memoria, e rigore scientifico e documentale, la precaria situazione igienico –sanitaria del Lager, nel rapporto medico su Auschwitz scritto insieme a Leonardo De Benedetti.

C’è un Levi naturalista che osserva fenomeni naturali o curiosi, e li descrive con il suo consueto stile letterario, essenziale, chiaro e mai ridondante. Questo paradossalmente nel suo libro meno venduto e meno conosciuto, ma che rappresenta a mio parere l’appendice o una sorta di continuazione ideale del “Sistema periodico”, cioè “L’altrui mestiere”.

Libro che meriterebbe decisamente una riscoperta ed una rilettura.

C’è poi il Levi tecnico, il Levi che passa il tempo a risolvere problemi pratici, piccoli intoppi quotidiani del proprio lavoro. E lo ricorda spesso con una vena di malinconia. Il Levi che si districa tra il Nichel da estrarre nella miniera poco distante da Torino, dove è costretto a vivere da apolide, fino al Levi che imparerà sul campo il mestiere di far vernici subito dopo l’esperienza del Lager, e quella del picaresco ed avventuroso ritorno in Italia narrato ne “La tregua”.

Queste pagine di Levi, sono quelle che personalmente riescono sempre a farmi gioire e sorridere. Perché quello che lo scrittore narra e descrive, è patrimonio comune di molti. Piccole vittorie, grane da risolvere in ambito lavorativo. E soprattutto un’atmosfera che si comprende pienamente quando si è stati in un laboratorio chimico, o nei reparti di un’azienda. Levi ammetteva di essere legato ad una pratica di laboratorio di analisi che è riduttivo e ingiusto definire anacronistica, cioè quella dell’analisi sistematica, confessando di preferirla a quella strumentale, di esservi certamente molto legato. Quel metodo di analisi e di lavoro in laboratorio viene narrato nel “Sistema periodico”, e ne è una componente importante. Costituisce la struttura del libro, e dello stile narrativo. Intrecciata ai ricordi legati alla sua esperienza di ebreo italiano, prima discriminato, e successivamente precipitato nell’”anus mundi” del Lager.

Quest’anno ricorrono due anniversari. Che in qualche modo si intrecciano. Il primo è certamente quello del centenario della nascita di Levi. Il secondo è quello dello sbarco sulla Luna, di cui ricorre il cinquantesimo anniversario, e su cui Levi scrisse un articolo intitolato “ La luna e noi”.

Levi con un’intuizione quasi profetica percepiva il crescente disincanto che già permeava di la società italiana. Quasi una profezia di questi nostri tempi. Desiderava il ritorno della capacità di meravigliarsi

E questo brano dove lo scrittore mostra il suo entusiasmo per l’impresa degli astronauti che per primi hanno toccato il suolo lunare, diventa un pezzo di rara bellezza.

Noi molti, noi pubblico, siamo ormai assuefatti, come bambini viziati: il rapido susseguirsi dei portenti spaziali sta spegnendo in noi la facoltà di meravigliarci, che pure è propria dell’uomo, indispensabile per sentirci vivi.

La poliedricità, la grandezza di Primo Levi si possono cogliere nella loro interezza anche in queste poche righe. E ulteriori studi sulla vita e l’opera dello scrittore potranno darci altre opportunità per riscoprire questa facoltà dimenticata. Oltre al piacere di leggere e rileggere le pagine delle sue opere.

Elementi della tavola periodica, Oro, Au. 1 parte.

29 luglio, 2019 - 17:43

Rinaldo Cervellati

 

“All’idea di quel metallo portentoso onnipossente

un vulcano la mia mente incomincia a diventar…”

(da: Il barbiere di Siviglia, di Gioacchino Rossini)   

Forse per il suo colore giallo brillante, forse perché è uno dei pochi metalli che si trova libero in natura o per la sua inalterabilità, l’oro ha sollecitato, nel bene e nel male, tutte le fantasie umane fin dalla preistoria.

È l’elemento n 79 della Tavola periodica, simbolo Au (dal latino aurum[1]), raro ma non il più raro essendo la sua abbondanza nella crosta terrestre mediamente 0,03 g/tonnellata e negli oceani circa 1,3 mg/tonnellata acqua marina.

Un poco di storia

In inglese oro si traduce gold, come pure in tedesco, etimologicamente affine a parole derivate dal proto-germanico (gulþą) e dal proto-indoeuropeo (ǵʰelh₃- ) che significano brillante, giallo.

Sembra proprio che l’oro sia stato il primo metallo utilizzato dall’uomo, infatti piccole quantità di oro naturale sono state trovate in grotte spagnole utilizzate durante il tardo Paleolitico, 40.000 a.C. ca. Manufatti d’oro fecero la loro prima apparizione all’inizio del periodo pre-dinastico in Egitto, fine quinto- inizio quarto millennio a.C., e la fusione fu sviluppata nel corso del IV millennio.

Monile egizio in oro e pietre preziose

Manufatti d’oro compaiono in Mesopotamia all’inizio del IV millennio, come pure nei Balcani. Dal 1990 gli archeologi hanno trovano manufatti d’oro nelle necropoli ipogee di Nahal Qana in Palestina, datati IV millennio a.C. Manufatti d’oro come copricapo e dischi apparvero nell’Europa centrale dall’età del bronzo, II millennio a.C.

La più antica mappa conosciuta di una miniera d’oro fu disegnata durante la XIX dinastia dell’antico Egitto (1320-1200 a.C.), mentre il primo riferimento scritto all’oro fu registrato nella dodicesima dinastia verso il 1900 a.C.

Mappa egizia

I geroglifici risalenti al 2600 a.C. descrivono l’oro come molto abbondante in Egitto. In Egitto e in particolare nella regione della Nubia (dall’antico egizio Nwb, che significa appunto oro) vi erano molte miniere d’oro e gli egizi possedevano la tecnologia per estrarlo e lavorarlo, tanto che la Nubia divenne un’importante area di produzione aurifera per gran parte della storia successiva. La mappa dei papiri conservata al Museo Egizio di Torino mostra il piano di una miniera d’oro in Nubia, insieme a indicazioni sulla geologia del luogo.

L’oro è menzionato frequentemente nell’Antico Testamento, dalla storia del vitello d’oro a quella dell’altare d’oro. Nel Nuovo Testamento è incluso nei doni dei magi a Gesù; il libro dell’Apocalisse descrive la città di Gerusalemme come se avesse strade “fatte di oro puro, chiare come cristallo”.

Lo sfruttamento dell’oro nell’angolo sud-est del Mar Nero pare risalga al tempo di Re Mida, e fu importante per datare quello che probabilmente è stato il primo conio in oro, avvenuto in Lydia, regione dell’Asia minore, attorno al 610 a.C.

Nella metallurgia romana furono sviluppati nuovi metodi per estrarre oro su larga scala, in particolare in Spagna dal 25 a.C. e in Dacia (attuali Romania e Moldavia) a partire dal 106 d.C.

Moneta in oro di Adriano 125-128 d.C.

Una delle più grandi miniere era a Las Medulas a León, dove sette lunghi acquedotti consentivano di isolare la maggior parte di un grande deposito alluvionale. I vari metodi usati sono ben descritti da Plinio il Vecchio nella sua enciclopedia Naturalis Historia, scritta verso la fine del I secolo d.C.

Uno degli obiettivi principali degli alchimisti medievali era produrre oro da altre sostanze, come il piombo, presumibilmente dall’interazione con una sostanza mitica chiamata pietra filosofale. Sebbene non siano mai riusciti in questo tentativo[2], gli alchimisti hanno perfezionato alcuni procedimenti come ad es. la calcinazione, la distillazione e la sublimazione, poi divenute di uso comune in chimica. Il simbolo alchemico per l’oro era il cerchio con un punto al centro, che era anche il simbolo astrologico e l’antico carattere cinese per il Sole.

Simbolo alchemico per l’oro

L’esplorazione europea delle Americhe (dal 1492) è incentivata dai resoconti dei primi esploratori circa la gran quantità di gioielli d’oro indossati dalle popolazioni native in America Centrale, Perù e Colombia.

Nel XIX secolo fu scoperta una serie di bacini auriferi in Nord America, soprattutto in California, Colorado, Black Hills e Klondike (Alaska).

Anche se dal punto di vista geologico l’oro nell’antichità era facile da ottenere, il 75% dell’oro prodotto è stato estratto dopo il 1910.

Estrazione e raffinamento

A causa della sua notevole inalterabilità (elevata inerzia chimica) l’oro si trova principalmente allo stato nativo o legato ad altri metalli (argento e rame). Spesso si presenta in forma di granuli e pagliuzze, a volte si trovano anche agglomerati piuttosto grossi, detti pepite. I granelli appaiono inclusi in minerali o sulle superfici di separazione tra cristalli di minerali. Si trova anche nei depositi alluvionali sul fondo dei fiumi.

Pepita d’oro (a sinistra), scaglie d’oro alluvionale (a destra)

L’oro si trova anche associato al quarzo, spesso in filoni, e a solfuri minerali (pirite, calcopirite, galena, arsenopirite).

Filone d’oro in quarzo

Fino dal 1880 il Sudafrica è stato la fonte di circa due terzi dell’oro estratto nel mondo. La città di Johannesburg è stata costruita alla sommità di uno dei più grandi giacimenti mondiali. Tuttavia, dal 2007, la posizione di predominio del Sudafrica è stata superata dalla Cina, la cui produzione nel 2008 è giunta fino a 260 tonnellate di oro, con un incremento del 59% dal 2001. Tra gli altri maggiori produttori figurano gli Stati Uniti (principalmente in Alaska, in Dakota e in Nevada), l’Australia occidentale, il Perù e la Russia.

La seguente mappa mostra la distribuzione mondiale dell’oro.

Mappa della distribuzione mondiale di oro

In Italia l’oro si trova in quantità ponderabili in alcuni fiumi (Po, Ticino). All’interno del Monte Rosa si trova un giacimento più ricco di quelli attualmente presenti in Sudafrica. Tuttavia, a causa di problemi ambientali, di sicurezza e di costi, tale oro non è sfruttato.

La quantità totale di oro presente negli oceani è tutt’altro che trascurabile, ma la bassissima concentrazione rende per il momento antieconomica l’estrazione dall’acqua marina.

L’oro si estrae quindi dalle miniere e, in misura minore, dai depositi alluvionali.

Dopo averlo estratto, l’oro ha bisogno di essere raffinato per aumentarne la purezza. Il metodo più utilizzato è quello ideato e realizzato da Francis Bowyer Miller[3] che lo brevettò nel 1867.

Il processo Miller è un procedimento chimico su scala industriale utilizzato per raffinare l’oro a un grado di purezza del 99,95%. Consiste nell’insufflare una corrente di gas cloro puro sopra e attraverso un crogiolo contenente l’oro fuso da purificare. Poiché quasi tutte le impurezze metalliche degli altri elementi formano cloruri prima dell’oro, possono essere rimosse essendo questi sali insolubili nel metallo fuso. L’oro risultante è puro al 99,95%.

Quando si rende necessaria una purezza ancora maggiore viene utilizzato il metodo Wohlwill[4] che consiste nell’elettrolisi di una soluzione di acido cloroaurico. L’oro che si deposita sul catodo raggiunge una purezza del 99,99%.

A livello mondiale, l’oro prodotto è impiegato per circa il 50% in gioielleria, il 40% in investimenti e il 10% nell’industria.

Dal 1998 l’Italia è il maggiore trasformatore di oro al mondo, con una media di 450-500 tonnellate lavorate ogni anno.

Caratteristiche chimico-fisiche

L’oro è il metallo più duttile e malleabile: un grammo d’oro può essere battuto in lamine di area pari a un metro quadrato. Questi sottilissimi fogli d’oro puro sono usati per decorare cornici di quadri, specchi, ecc. È un metallo tenero e per conferirgli una maggiore resistenza meccanica è lavorato in lega con altri metalli.

L’oro non è intaccato né dall’aria né dall’umidità né dalla maggior parte dei reagenti chimici. Non è solubile negli acidi forti (cloridrico, nitrico e solforico) e negli alcali caustici, invece può essere ossidato dall’acqua regia (una miscela di acido nitrico e cloridrico in rapporto 1:3) o con soluzioni acquose contenenti cianuro di sodio o potassio in presenza di ossigeno o perossido di idrogeno. Nell’acqua regia forma l’acido tetracloroaurico (HAuCl4). A contatto con il mercurio si scioglie in esso formando una lega detta amalgama.

L’oro si lega con molti altri metalli: le leghe col rame sono rossastre, con il ferro verdi, con l’alluminio violacee, col platino bianche, col bismuto e l’argento nerastre.

Gli stati di ossidazione più frequenti dell’oro sono +1 e +3. Gli ioni dell’oro sono facilmente ridotti per aggiunta di qualsiasi altro metallo. Il metallo aggiunto si ossida e si scioglie facendo precipitare l’oro metallico.

È un eccellente conduttore di elettricità, il migliore tra i metalli dopo l’argento e il rame.

Uso nella monetazione

L’oro è stato ampiamente usato in tutto il mondo come denaro sia per rendere efficienti gli scambi sia per immagazzinare ricchezza. Ai fini degli scambi, le zecche producevano monete e lingotti d’oro standardizzati in peso e purezza.

Monete (a sinistra) e lingotti (a destra)

Le prime monete conosciute contenenti oro furono coniate in Asia Minore, attorno al 600 a.C.

La moneta talento d’oro in uso durante l’epoca greca pesava tra 8,42 e 8,75 grammi.

Dopo una iniziale preferenza all’uso dell’argento, le economie europee ristabilirono la coniazione dell’oro come moneta durante il tredicesimo e il quattordicesimo secolo.

I certificati di possesso e le valute cartacee (convertibili in monete d’oro presso la banca emittente) si aggiunsero alle monete circolanti in oro nella maggior parte delle economie industriali del diciannovesimo secolo. Durante la prima guerra mondiale, le nazioni belligeranti gonfiarono le loro valute cartacee per finanziare lo sforzo bellico. Dopo la guerra, i paesi vittoriosi, in particolare la Gran Bretagna, ripristinarono gradualmente la convertibilità dell’oro, e i flussi internazionali di oro tramite cambiali rimasero sotto embargo; le transazioni internazionali venivano effettuate esclusivamente attraverso scambi bilaterali.

Nel secondo dopoguerra l’oro fu sostituito da un sistema di valute nominalmente convertibili legate da tassi di cambio fissi secondo il sistema di Bretton Woods[5]. Nel 1971 gli Stati Uniti rifiutarono di riscattare i propri dollari in oro pertanto la convertibilità diretta delle monete d’oro fu abbandonata da quasi tutti i governi mondiali. La Svizzera è stata l’ultima nazione a legare la sua moneta all’oro; sostenne il 40% del suo valore fino a quando gli svizzeri non aderirono al Fondo monetario internazionale nel 1999.

Le banche centrali continuano a mantenere una parte delle loro riserve liquide in oro. Le riserve auree mondiali e la loro negoziazione sono diventate una piccola parte di tutti i mercati, il tasso di cambio fisso è stato sostituito da prezzi variabili. Sebbene lo stock d’oro cresca solo dell’1%-2% all’anno, una lievissima quantità del metallo viene irrimediabilmente persa.

La percentuale di oro (finezza) nelle leghe è misurata dal carato[6] (k). L’oro puro (commercialmente chiamato oro zecchino) è designato a 24 carati (24k). Le monete d’oro inglesi destinate alla circolazione dal 1526 agli anni ’30 del secolo scorso erano tipicamente costituite da una lega standard di 22k denominata corona.

Sebbene i prezzi di alcuni metalli del gruppo del platino siano molto più alti, l’oro è ancora considerato il più desiderabile dei metalli preziosi.

Molti detentori di oro lo conservano sotto forma di lingotti o di monete come bene rifugio contro l’inflazione o le crisi economiche, sebbene la sua efficacia in quanto tale sia stata messa in dubbio. Le moderne monete di metallo prezioso per scopi di investimento o di collezione non richiedono buone proprietà di usura meccanica; sono in genere oro fino a 24k, sebbene l’American Gold Eagle e le sovrane britanniche continuino ad essere coniati in metallo 22k (0.92) come da tradizione..

Sterlina in oro 22k

(continua)

[1] Secondo la simbologia introdotta da J. J. Berzelius nel 1814, tuttora in uso.

[2] La trasmutazione degli elementi chimici è divenuta possibile nel XX secolo tramite la fisica nucleare. La prima sintesi dell’oro fu effettuata dal fisico giapponese Hantaro Nagaoka nel 1924, che sintetizzò l’oro bombardando il mercurio con neutroni. Un gruppo di fisici americani condusse lo stesso esperimento nel 1941, ottenendo lo stesso risultato e dimostrando che gli isotopi d’oro prodotti in questo modo erano tutti radioattivi. L’oro può attualmente essere prodotto in un reattore nucleare mediante irradiazione neutronica di platino o mercurio.

[3] Francis Bowyer Miller (1828-1887), inglese, saggiatore di metalli, artista e fotografo. Il suo maggior successo scientifico è stato lo sviluppo di un processo di raffinazione e tempra dell’oro che porta il suo nome. Brevettò questo processo a Londra nel 1867. Dodici mesi dopo, l’articolo che descriveva il processo fu presentato alla Chemical Society di Londra. Poco dopo il suo metodo fu applicato con successo dalla Zecca di Sydney e dalla Bank of New Zealand ad Auckland, in Nuova Zelanda.

[4] Wolf Emil Wohlwill (1835 –1912), ingegnere elettrochimico tedesco-ebraico ha inventato il processo di purificazione dell’oro che porta il suo nome nel 1874.

[5] Il sistema di Bretton Woods stabilì le regole per le relazioni commerciali e finanziarie tra Stati Uniti, Canada, Paesi dell’Europa occidentale, Australia e infine Giappone dopo gli accordi del 1944. Fu il primo esempio di una gestione pienamente negoziata allo scopo di governare le relazioni monetarie tra stati indipendenti.

[6] Il carato è principalmente utilizzato in oreficeria e metallurgia sia come unità di misura della massa di materiali preziosi, sia come indicatore di purezza delle leghe auree. Il suo nome deriva dai semi di carruba che pesano tutti circa 200 mg. Nel 1907 la IV Conférence générale des poids et mesures adottò come valore del carato (detto carato metrico) una unità di massa pari esattamente a 200 mg (0,2).

 

Elementi della tavola periodica: Ferro, Fe. 1. La biogeochimica del ferro.

26 luglio, 2019 - 17:11

Claudio Della Volpe

The world is moral still you know
and Nature’s wheels do grind

Put ferric P into the sea
and a rose someday you’ll find

Cycle of P, di R.M. Garrels

I colleghi mi scuseranno se torno sul ferro, sul quale ci sono stati già parecchi post qui, qui e qui, di cui uno molto recente, ma l’importanza di questo elemento non può essere sottovalutata in nessun contesto; solo che presenterò il mio punto di vista rovesciando l’approccio tradizionale: prima la biogeochimica e poi l’industria siderurgica. Cosa come vedremo ampiamente giustificata.

Il ferro è l’elemento metallico più abbondante del pianeta Terra, ma la sua abbondanza decresce dal centro verso la periferia; infatti mentre in totale l’abbondanza è del 16%, quella della sola crosta è del 4.75. Nella crosta viene dunque superato dall’Alluminio e dal Calcio. Nel nucleo invece l’abbondanza raggiunge il 20% o superiore.

Si tratta di un elemento fondamentale nell’Universo, il più pesante prodotto dalla nucleosintesi stellare delle stelle massicce e si ipotizza che l’Universo nel futuro sarà fatto di ferro; queste due cose discendono dal fatto che l’isotopo 56 del ferro è il nucleo con la maggiore energia di legame, dunque il più stabile.

Ne consegue che la prima riflessione da fare è che il ferro che troviamo sulla Terra o altrove è già stato nel cuore di qualche stella, è un elemento che ne ha viste di caldissime e grandissime un vero elemento del nucleo, in ogni senso.

Il nome del ferro ha una origine complessa; la parola ferro è una parola tardolatina medioevale e viene probabilmente da fer, portare; o da una radice indoeuropea comune phars, essere rigido, mentre la parola siderurgia viene direttamente dal greco σιδηρο-, forma compositiva di σίδηρος «ferro», che ci riporta al fatto che il primo ferro conosciuto dagli uomini viene dal cielo, dalle meteoriti che cadevano dal cielo ed era ritenuto un metallo degli dei.

Il che, per tutto quel che abbiamo detto, è sorprendentemente corretto.

Come raccontato altrove, il ferro lo usiamo da almeno 5000 anni, ma la capacità di estrarlo dai minerali la abbiamo acquisita con lunghe prove e la possediamo da soli 3500 anni circa; quando imparammo a farlo, data la capacità del ferro di essere fra i più duri e resilienti materiali che avevamo a disposizione cambiò la vita di tutti e la loro organizzazione sociale. L’età del ferro è stata certo un’eta di rivoluzioni e scontri, dal 2000 aC in poi; al principio del I millennio aC il ferro era entrato ormai nella cultura e nell’uso comuni, sbaragliando il bronzo e le armi costruite con esso.

Le armi di Omero, le armi degli Achei dagli occhi cerulei, erano di bronzo, (anche se le tattiche militari sembrano quelle più tarde dell’età del ferro) ma quelle dei Romani erano di ferro. Questo è un argomento che meriterebbe più spazio, ma lo riprenderò nella seconda parte del post.

Si dice raramente che il Ferro presenta quattro allotropi: α, β, γ e δ, per cui il suo diagramma di fase è il seguente:

 il ferro alfa esiste a temperature inferiori a 768 °C; magnetico.
il ferro beta esiste a temperature comprese tra 768/770 °C e 910 °C; presenta una perdita delle caratteristiche magnetiche e alta duttilità.
il ferro gamma esiste a temperature comprese tra 910 °C e 1 394 °C; scioglie carbonio.
il ferro delta esiste a temperature comprese tra 1 394 °C e 1 538 °C.

Il ferro ha quattro isotopi stabili il già nominato 56, il più abbondante, 54, 57, 58. Presente in genere come ossido nella crosta, può avere comunque numeri di ossidazione +2, +3, +4, +6.

Dal ciclo globale rappresentato qui sopra , estratto sempre dal classico lavoro di Rauch e Pacyna, più volte citato sul blog, si evince che il ferro è principalmente un metallo presente in Natura e i cui flussi e depositi naturali sono dominanti su quelli umani; dunque la mia scelta di privilegiare il ciclo biogeochimico è ragionevole. Comunque questi dati sono del 2000 e vedremo nella seconda parte del post che il flusso del ferro nella società umana è raddoppiato e che dunque oggi il flusso indicato fra Production e Fabrication è passato da 850 a 1700 milioni di ton, mentre tutti gli altri flussi in figura sono rimasti costanti. Notate come lo stock umano è simile come dimensioni a quello presente in tutte le acque dolci, decine di miliardi di ton e che questo a sua volta è maggiore di quello presente nell’oceano.

Data la complessità del ciclo lo ripresento in modo più qualitativo in quest’altra immagine tratta da Wikipedia e nella quale risulta chiaro che il ferro è presente sia a livello liquido e solido che in atmosfera, non certo perchè esistano composti gassosi del ferro, ma perchè il ferro domina la composizione della polvere e delle ceneri vulcaniche. Tramite questa forma il ferro penetra nell’Oceano. Tuttavia data la condizione ossidante dell’oceano il ferro come tale è uno dei metalli meno concentrati, al contrario dell’alluminio. Una volta ossidato infatti esso formando ossidi ed idrossidi precipita nello stock del fondo.

La maggioranza dei minerali di ferro, dei depositi di ferro sono ossidi e vengono dall’ultima tragedia biologica veramente grande, ossia l’invasione dell’ossigeno.

https://geology.com/rocks/iron-ore.shtml

Ematite di ferro oolitica.

Quasi tutti i maggiori depositi di ferro sono in rocce che si formarono oltre 1.8 miliardi di anni fa. A quell’epoca gli oceani della Terra contenevano ferro disciolto in abbondanza e quasi niente ossigeno. I depositi di ferro si iniziarono a formare quando i primi organismi capaci di fotosintesi cominciarono a rilasciare ossigeno nell’acqua. Questo ossigeno immediatamente si combinò con il ferro ivi disciolto in abbondanza per produrre ematite o magnetite. Questi minerali si depositarono sul fondo oceanico in grande quantità formando quelle che sono chiamate “formazioni di ferro a bande”. Le rocce con le bande sono costituite da depositi di minerali di ferro depositato in bande alternate con silice e a volte materiali organici trasformati in petrolio o gas. Le bande sono probabilmente il risultato dell’attività stagionale degli organismi viventi.

Il ferro è rimasto un elemento chiave per la crescita e lo sviluppo degli organismi viventi, ma la sua concentrazione oceanica è grandemente diminuita; in questo senso si parla di micronutriente e di elemento limitante; questo concetto fu proposto per la prima volta da Joseph Hart negli anni 30 del secolo scorso; egli notò che ci sono ampie zone marine in cui la vita è assente anche se i macronutrienti sono presenti e ne dedusse che mancava qualcosa (si tratta delle cosiddette zone HNLC, ossia High Nutrient-Low Chlorophyll). Il discorso fu ripreso negli anni 80 e poi riapprofondito usando tecniche satellitari.

Oggi si pensa che il micronutriente mancante sia proprio il ferro, tanto che si sono fatti vari esperimenti per dimostrare che aggiungendo ferro all’oceano in forma di microparticelle, come quelle che si depositerebbero naturalmente da eruzioni vulcaniche, si ha uno sviluppo esplosivo di organismi viventi fotosintetici con potenziale enorme assorbimento di biossido di carbonio. Ovviamente l’idea viene vista anche come una possibile soluzione al problema del global warming, ma in realtà la cosa non è ancora del tutto chiara, proprio perchè i cicli biogeochimici non sono ancora ben compresi in tutta la loro eccezionale complessità, per cui dati i molteplici effetti di retroazione possibili, questa rimane una ipotesi, sia pure robusta. (https://www.niwa.co.nz/iron-fertilisation). Recentemente si è ipotizzato che anche altri micronutrienti come lo Zinco siano necessari per lo sviluppo del fitoplancton.

Il ferro arriva nell’oceano dalle ceneri vulcaniche e dalla polvere, dalle acque dei ghiacciai e dalle sorgenti idrotermali lungo i margini delle zolle continentali. Parecchio ferro è in forma complessa, non come ione +2 o +3.

Il ferro è un bioelemento essenziale per la maggior parte delle forme di vita dai batteri ai mammiferi. La sua importanza nasce dall’abilità di mediare il trasferimento di elettroni.

Nello stato ferroso, Fe+2, esso agisce come un donatore di elettroni mentre in quello ferrico, Fe+3, come un accettore. Per questo motivo esso gioca un ruolo vitale nella catalisi delle reazioni enzimatiche che coinvolgano un trasferimento di elettroni, cioè nelle reazioni di ossidoriduzione. Le proteine possono contenere il ferro come parte di diversi cofattori, come per esempio i clusters Fe-S e nei gruppi eme; in queste forme il ferro è coinvolto in un numero incredibile di reazioni essenziali della cellula (pensiamo solo alla nostra emoglobina che ci serve a respirare).

In un certo senso il ferro esemplifica il comportamento contraddittorio e dialettico di molte sostanze nel complesso delle reazioni biologiche; da una parte è essenziale per il motivo che abbiamo appena detto, ma d’altra parte ha la potenzialità di diventare deleterio.

Al pH e alla pressione parziale di ossigeno considerate fisiologiche Fe(II) è facilmente ossidato a Fe(III), che a sua volta si trasforma rapidamente nelle forme polimeriche insolubili di Fe(OH)3.

https://geoweb.princeton.edu/research/geochemistry/research/aqueous-polymers.html

Inoltre, se non appropriatamente chelato a causa della sua azione catalitica nelle reazioni redox ad un elettrone, il ferro gioca un ruolo nella formazione dei radicali ossigeno che costituiscono la causa del danno perossidativo per la cellula.

Dunque gli organismi sono obbligati a risolvere questo paradosso; da una parte mantenere il ferro libero al più basso livello possibile ma dall’altra comunque ad un livello tale da supportare la sintesi adeguata di emoproteine e altre proteine contenenti ferro.

Per fare questo gli organismi viventi hanno sviluppato molecole specializzate per acquisire, trasportare e stoccare il ferro in una forma contemporaneamente solubile ma non tossica. E naturalmente questo traffico del ferro abbisogna di un meccanismo sofisticato di controllo.

Ecco in poche parole raccontato il ruolo del ferro nella biosfera e nell’organismo, prima che nella nostra società, argomento al quale sarà dedicata la seconda parte di questo post.

Riferimenti

Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles Jason N. Rauch and Jozef M. Pacyna 
 GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 23, GB2001, doi:10.1029/2008GB003376, 2009

http://www.homepages.ed.ac.uk/shs/Climatechange/Carbon%20sequestration/Martin%20iron.htm

https://www.sciencedirect.com/science/article/pii/S0085253815462301

Kidney International

Volume 55, Supplement 69, March 1999, Pages S2-S11

Cellular iron metabolism di Prem Ponka

(continua)

Copyright © 2012 Società Chimica Italiana. All Rights Reserved.